Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads, complex numbers, constants, advanced functions, user-defined keys, quick copy, and
more! Learn more (Link leaves KnowledgeDoor website)

Gallium

Gallium Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Gallium Quick Reference

Click button to see citations

Notes

Symbol

Ga

Atomic Number

31

Atomic Weight

Rounded

69.723

for regular calculations

Standard

69.723 ± 0.001

for precise calculations

Oxidation States

3

more common

2

less common

1

less common

Pauling Electronegativity

oxidation state: 3

1.81

Electron Configuration

Orbital Occupancy

[Ar] 3d10 4s2 4p1

[Ar] represents the closed-shell electron configuration of argon

Orbital Filling Order

[Ar] 4s2 3d10 4p1

[Ar] represents the closed-shell electron configuration of argon

Term Symbol

2P1/2

see expanded configuration ...

Ionization Energies

I   (1)

 5.9993016 ± 0.0000012 eV

II  (2)

20.51515 ± 0.00012 eV    

III (3)

30.7258 ± 0.0002 eV      

IV  (4)

63.241 ± 0.009 eV        

see all 31 energies ...

Electron Affinity

0.41 ± 0.04 eV 

3300 ± 300 cm-1

Density

liquid, 302.91 K

6.078 g/ml 

solid, 25 °C

5.910 g/cm3

Molar Volume

solid, 298 K, 1 atm

11.803 cm3/mol

Melting Point

1 atm

302.9146 K

ITS-90 fixed point (melting point)

Boiling Point

1 atm

2477.15 K

Thermal Conductivity

liquid, 400 K

34.5 W/(m K)

solid

300 K

polycrystalline

40.6 W/(m K)

parallel to a-axis

40.6 W/(m K)

parallel to b-axis

88.3 W/(m K)

parallel to c-axis

15.9 W/(m K)

298.2 K

polycrystalline

40.8 W/(m K)

parallel to a-axis

40.8 W/(m K)

parallel to b-axis

88.3 W/(m K)

parallel to c-axis

15.9 W/(m K)

273.3 K

polycrystalline

41.0 W/(m K)

parallel to a-axis

41.0 W/(m K)

parallel to b-axis

88.4 W/(m K)

parallel to c-axis

16.0 W/(m K)

200 K

polycrystalline

42.4 W/(m K)

parallel to a-axis

42.4 W/(m K)

parallel to b-axis

89.6 W/(m K)

parallel to c-axis

16.3 W/(m K)

see all 58 conductivities ...

Pyykkö Covalent Radius

single bond

124 pm

double bond

117 pm

triple bond

121 pm

Atomic Radius

153 pm

Enthalpy of Fusion

1 atm

5.59 kJ/mol

Enthalpy of Vaporization

1 atm

256.1 kJ/mol

Quantity

Gallium Atomic Structure

Notes

Ionization Energies

I   (1)

 5.9993016 ± 0.0000012 eV

II  (2)

20.51515 ± 0.00012 eV    

III (3)

30.7258 ± 0.0002 eV      

IV  (4)

63.241 ± 0.009 eV        

see all 31 energies ...

Electron Affinity

0.41 ± 0.04 eV 

3300 ± 300 cm-1

Electron Binding Energies

K    (1s)

10367 eV  

LI   (2s)

 1299.0 eV

LII  (2p1/2)

 1143.2 eV

LIII (2p3/2)

 1116.4 eV

see all 9 energies ...

Electron Configuration

Orbital Occupancy

[Ar] 3d10 4s2 4p1

[Ar] represents the closed-shell electron configuration of argon

Orbital Filling Order

[Ar] 4s2 3d10 4p1

[Ar] represents the closed-shell electron configuration of argon

Term Symbol

2P1/2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

30.3094

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

30.3094

Zeff = ζ × n

2s

Orbital Exponent

11.2995

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

22.5990

Zeff = ζ × n

see all 8 effective nuclear charges ...

Screening Percentage

72.5%

Fluorescence Yields

ωK

0.517 

ωL1

0.0021

ωL2

0.012 

ωL3

0.013 

Coster-Kronig Yields

F12

0.29 

F13

0.53 

F23

0.032

Quantity

Gallium Physical Properties

Notes

Density

liquid, 302.91 K

6.078 g/ml 

solid, 25 °C

5.910 g/cm3

Molar Mass

Rounded

69.723 g/mol

for regular calculations

Standard

69.723 ± 0.001 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

11.803 cm3/mol

Physical Form

silvery liquid or gray orthorhombic crystals

Linear Thermal Expansion Coefficient

25 °C

18×10-6 K-1

Speed of Sound

liquid, 50 °C, longitudinal wave

2740 m/s

Young's Modulus

9.81 GPa

Poisson's Ratio

0.470

Dielectric Constant

300 K, 9200 MHz

16.2

4.2 K

9200 MHz, microwave measurement

16.0

750 MHz, capacitance bridge

16.5

Electrical Resistivity

solid, 295 K

14.85×10-8 Ohm m

Contact Potential

3.80 eV

Thermionic Work Function

4.12 eV

Superconducting Transition Temperature

ambient pressure

1.091 K

1.4 GPa

7 K    

maximum temperature

0 Pa

1.091 K

Superconducting Critical Magnetic Field at Absolute Zero

51×10-4 T

Superconducting Energy Gap

0 K

3.3×10-4 eV

Mineralogical Hardness

1.5

Isothermal Bulk Modulus

273 K

56.9 GPa

Isothermal Compressibility

273 K

0.0176 GPa-1

Gram Atomic Volume

12 cm3

Quantity

Gallium Atomic Interaction

Notes

Oxidation States

3

more common

2

less common

1

less common

Pauling Electronegativity

oxidation state: 3

1.81

Mulliken-Jaffe Electronegativity

oxidation state: 3, hybridsp2

2.01

oxidation state: 1, orbitalp

0.87

Sanderson Electronegativity

oxidation state: 3

2.419

oxidation state: 1

0.86

Allred-Rochow Electronegativity

oxidation state: 3

1.82

Configuration Energy

electron volt units

10.39 eV

Pauling units

 1.756  

Allen Electronegativity

oxidation state: 3

1.756

Allred Electronegativity

oxidation state: 3

1.81

Boyd-Edgecombe Electronegativity

1.75

Ghosh-Gupta Electronegativity

4.6638 eV

Nagle Electronegativity

1.56

Pearson Absolute Electronegativity

3.2 eV

Smith Electronegativity

oxidation state: 3

1.7

Free Electron Fermi Surface Parameters

300 K

electron concentration

15.30×1022 cm-3

radius parameter

2.19

fermi wavevector

1.65×108 cm-1

fermi velocity

1.91×108 cm/s

fermi energy

10.35 eV

fermi temperature

12.01×104 K

Chemical Hardness

2.9 eV

Cohesive Energy

per mole

271 kJ/mol    

per atom

  2.81 eV/atom

Quantity

Gallium Thermodynamics

Notes

Melting Point

1 atm

302.9146 K

ITS-90 fixed point (melting point)

Boiling Point

1 atm

2477.15 K

Thermal Conductivity

liquid, 400 K

34.5 W/(m K)

solid

300 K

polycrystalline

40.6 W/(m K)

parallel to a-axis

40.6 W/(m K)

parallel to b-axis

88.3 W/(m K)

parallel to c-axis

15.9 W/(m K)

298.2 K

polycrystalline

40.8 W/(m K)

parallel to a-axis

40.8 W/(m K)

parallel to b-axis

88.3 W/(m K)

parallel to c-axis

15.9 W/(m K)

273.3 K

polycrystalline

41.0 W/(m K)

parallel to a-axis

41.0 W/(m K)

parallel to b-axis

88.4 W/(m K)

parallel to c-axis

16.0 W/(m K)

200 K

polycrystalline

42.4 W/(m K)

parallel to a-axis

42.4 W/(m K)

parallel to b-axis

89.6 W/(m K)

parallel to c-axis

16.3 W/(m K)

see all 58 conductivities ...

Triple Point

302.9166 K

ITS-90 first-quality, secondary reference point

Critical Point

7620 K

Vapor Pressure

2245 °C

100 kPa

1852 °C

10 kPa

1565 °C

1 kPa

1347 °C

100 Pa

1175 °C

10 Pa

1037 °C

1 Pa

Enthalpy of Fusion

1 atm

5.59 kJ/mol

Enthalpy of Vaporization

1 atm

256.1 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

26.03 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.373 J/(g K)

Electronic Heat Capacity Coefficient

0.60 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

325 K

Room Temperature ( 298 K )

240 K

Quantity

Gallium Identification

Notes

CAS Number

7440-55-3

DOT Number

2803

Quantity

Gallium Atomic Size

Notes

Atomic Radius

153 pm

Orbital Radius

125.4 pm

Pyykkö Covalent Radius

single bond

124 pm

double bond

117 pm

triple bond

121 pm

Cordero Covalent Radius

122 pm

Shannon-Prewitt Crystal Radius

ion charge: +3

coordination number: 4

61 pm  

coordination number: 5

69 pm  

coordination number: 6

76.0 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +3

coordination number: 4

47 pm  

coordination number: 5

55 pm  

coordination number: 6

62.0 pm

Pauling Empirical Crystal Radius

ion charge: +3

 62 pm

ion charge: +1

113 pm

Pauling Univalent Radius

ion charge: +1

81 pm

Batsanov Crystallographic Van Der Waals Radius

2.1×102 pm

Batsanov Equilibrium Van Der Waals Radius

241 pm

Bondi Van Der Waals Radius

187 pm

Slater Atomic-Ionic Radius

130 pm

Quantity

Gallium Crystal Structure

Notes

Allotropes

allotrope

α-gallium

alternate name

gallium I

symbol

αGa

allotrope

β-gallium

alternate name

gallium II

symbol

βGa

allotrope

γ-gallium

alternate name

gallium III

symbol

γGa

Nearest Neighbor Distance

300 K, 1 atm

244 pm

Atomic Concentration

300 K, 1 atm

5.10×1022 cm-3

Quantity

Gallium History

Notes

Discovery

date of discovery

1875

discoverer

Paul-Émile Lecoq de Boisbaudran

birth

April 18, 1838

death

May 28, 1912

location of discovery

Paris, France

Origin of Element Name

origin

Gallia

origin description

place—Latin for France

Origin of Element Symbol

symbol: Ga

origin

gallium

origin description

element name

Formerly Used or Proposed Element Names and Symbols

name

ekaaluminum

matching symbol

Ea

name

eka-aluminium

no matching symbol specified

Quantity

Gallium Abundances

Notes

Earth's Crust

1.9×101 ppm

Earth's Mantle

4.4 ppm

primitive mantle

Ocean Water

3×10-5 ppm

Metalliferous Ocean Sediment

Basal

6.8 ppm

River Water

1×10-4 ppm

U.S. Coal

5.7 ppm

Human Body

<0.7 mg

based on a 70 kg "reference man"

Human Hair

0.07 ppm

Human Kidney

0.004 ppm

Human Liver

0.0025 ppm

Human Muscle

0.0014 ppm

Ferns

0.23 ppm

Solar System

37.8

number of atoms for every 106 atoms of silicon

Sun

2.88 ± 0.10

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

3.11 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Gallium Nomenclature

Notes

Element Names in Other Languages

French

gallium

German

Gallium

Italian

gallio

Spanish

galio

Portuguese

gálio

Anions or Anionic Substituent Groups

gallide

Cations or Cationic Substituent Groups

gallium

Ligands

gallido

Heteroatomic Anion

gallate

'a' Term—Substitutive Nomenclature

galla

'y' Term—Chains and Rings Nomenclature

gally

References    (Click the button next to a value above to see complete citation information for that entry)

Albright, Thomas A., and Jeremy K. Burdett. Problems in Molecular Orbital Theory. New York: Oxford University Press, 1992.

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp 9003–9014. doi:10.1021/ja00207a003

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp. 9003–9014. doi:10.1021/ja00207a003

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bearden, J. A., and A. F. Burr. "Reevaluation of X-Ray Atomic Energy Levels." Reviews of Modern Physics, volume 39, number 1, 1967, pp. 125–142. doi:10.1103/RevModPhys.39.125

Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points." Metrologia, volume 33, number 2, 1996, pp. 133–154. doi:10.1088/0026-1394/33/2/3

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Boyd, Russell J., and Kenneth E. Edgecombe. "Atomic and Group Electronegativities from the Electron-Density Distributions of Molecules." Journal of the American Chemical Society, volume 110, number 13, 1988, pp 4182–4186. doi:10.1021/ja00221a014

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Cardona, M., and L. Ley, editors. Photoemission in Solids I: General Principles. Berlin: Springer-Verlag, 1978.

Clementi, E., and D. L. Raimondi. "Atomic Screening Constants from SCF Functions." Journal of Chemical Physics, volume 38, number 11, 1963, pp. 2686–2689. doi:10.1063/1.1733573

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

Cronan, D. S. "Basal Metalliferous Sediments from the Eastern Pacific." Geological Society of America Bulletin, volume 87, number 6, 1976, pp. 928–934. doi:10.1130/0016-7606(1976)87<928:BMSFTE>2.0.CO;2

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Fuggle, John C., and Nils Mårtensson. "Core-Level Binding Energies in Metals." Journal of Electron Spectroscopy and Related Phenomena, volume 21, number 3, 1980, pp. 275–281. doi:10.1016/0368-2048(80)85056-0

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Höhne, G. W. H., W. F. Hemminger, and H.-J. Flammersheim. Differential Scanning Calorimetry, 2nd edition. Berlin: Springer–Verlag, 2003.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kittel, Charles. Introduction to Solid State Physics, 5th edition. New York: John Wiley & Sons, Inc, 1976.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Madelung, Otfried, editor. Semiconductors — Basic Data, 2nd edition. Berlin: Springer–Verlag, 1996.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Preston-Thomas, H. "The International Temperature Scale of 1990 (ITS-90)." Metrologia, volume 27, number 1, 1990, pp. 3–10. doi:10.1088/0026-1394/27/1/002

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Shirai, T., J. Reader, A. E. Kramida, and J. Sugar. "Spectral Data for Gallium: Ga I through Ga XXXI." Journal of Physical and Chemical Reference Data, volume 36, number 2, 2007, pp. 509–615. doi:10.1063/1.2207144

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

U. S. Department of Transportation (DOT), Transport Canada (TC), Secretariat of Transport and Communications of Mexico (SCT), and Centro de Información Química para Emergencias (CIQUIME). 2008 Emergency Response Guidebook.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Williams, W. W., D. L. Carpenter, A. M. Covington, M. C. Koepnick, D. Calabrese, and J. S. Thompson. "Laser Photodetachment Electron Spectrometry of Ga-." Journal of Physics B: Atomic, Molecular and Optical Physics, volume 31, number 8, 1998, pp. L341–L345. doi:10.1088/0953-4075/31/8/003

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more (Link leaves KnowledgeDoor website)