Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads, complex numbers, constants, advanced functions, user-defined keys, quick copy, and
more! Learn more (Link leaves KnowledgeDoor website)

Mercury

Mercury Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Mercury Quick Reference

Click button to see citations

Notes

Symbol

Hg

Atomic Number

80

Atomic Weight

Rounded

200.59

for regular calculations

Standard

200.592 ± 0.003

for precise calculations

Oxidation States

2

more common

1

more common with disagreement

Pauling Electronegativity

2.00

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d10 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14 5d10

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

1S0

see expanded configuration ...

Ionization Energies

I   (1)

10.4375 eV

II  (2)

18.7568 eV

III (3)

34.2 eV   

Electron Affinity

<0 eV

<0 cm-1

Density

liquid

25 °C

13.534 g/ml   

293.150 K, 1 atm

13.545854 g/ml

234.29 K

13.630 g/ml   

solid, 227 K

14.26 g/cm3   

see all 46 densities ...

Molar Volume

solid, the element's solid allotrope existing at the lowest temperature

14.09 cm3/mol

Melting Point

1 atm

234.3210 K

ITS-90 first-quality, secondary reference point (freezing point)

Boiling Point

1 atm

629.769 K

ITS-90 second-quality, secondary reference point

Thermal Conductivity

liquid

400 K

 9.84 W/(m K)

300 K

 8.34 W/(m K)

298.2 K

 8.30 W/(m K)

273.2 K

 7.82 W/(m K)

solid, 200 K

polycrystalline

28.9 W/(m K) 

parallel to trigonal-axis

34.0 W/(m K) 

perpendicular to trigonal-axis

26.4 W/(m K) 

see all 48 conductivities ...

Pyykkö Covalent Radius

single bond

133 pm

double bond

142 pm

Atomic Radius

155 pm

Enthalpy of Fusion

1 atm

2.331 kJ/mol

Enthalpy of Vaporization

1 atm

59.15 kJ/mol

Quantity

Mercury Atomic Structure

Notes

Ionization Energies

I   (1)

10.4375 eV

II  (2)

18.7568 eV

III (3)

34.2 eV   

Electron Affinity

<0 eV

<0 cm-1

Electron Binding Energies

K    (1s)

83102 eV  

LI   (2s)

14839 eV  

LII  (2p1/2)

14209 eV  

LIII (2p3/2)

12284 eV  

see all 21 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d10 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14 5d10

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

1S0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

78.4581

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

78.4581

Zeff = ζ × n

2s

Orbital Exponent

29.5547

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

59.1094

Zeff = ζ × n

see all 14 effective nuclear charges ...

Screening Percentage

84.7%

Fluorescence Yields

ωK

0.962

ωL1

0.121

ωL2

0.37 

ωL3

0.322

Coster-Kronig Yields

F12

0.072

F13

0.615

F23

0.123

Quantity

Mercury Physical Properties

Notes

Density

liquid

25 °C

13.534 g/ml   

293.150 K, 1 atm

13.545854 g/ml

234.29 K

13.630 g/ml   

solid, 227 K

14.26 g/cm3   

see all 46 densities ...

Molar Mass

Rounded

200.59 g/mol

for regular calculations

Standard

200.592 ± 0.003 g/mol

for precise calculations

Molar Volume

solid, the element's solid allotrope existing at the lowest temperature

14.09 cm3/mol

Physical Form

heavy silvery liquid

Linear Thermal Expansion Coefficient

25 °C

60.4×10-6 K-1

Speed of Sound

liquid, 20 °C, longitudinal wave

1454 m/s

solid, 203 K

2670 m/s

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

13.6

Dielectric Constant

298 °F

1.00

Electrical Resistivity

liquid, 295 K

95.9×10-8 Ohm m

Contact Potential

4.50 eV

Photoelectric Work Function

4.53 eV

Superconducting Transition Temperature

α-mercury

4.154 ± 0.001 K

β-mercury

3.949 K

Superconducting Critical Magnetic Field at Absolute Zero

α-mercury

412×10-4 T

Superconducting Energy Gap

α-mercury, 0 K

16.5×10-4 eV

Mineralogical Hardness

1.5

Reflectivity

surface polished

0.450 μm

72.3%

0.550 μm

71.2%

0.650 μm

71.5%

see all 6 reflectivities ...

Isothermal Bulk Modulus

1 K

38.2 GPa

Isothermal Compressibility

1 K

0.0260 GPa-1

Gram Atomic Volume

14 cm3

Quantity

Mercury Atomic Interaction

Notes

Oxidation States

2

more common

1

more common with disagreement

Pauling Electronegativity

2.00

Mulliken-Jaffe Electronegativity

hybridsp

1.81

Sanderson Electronegativity

2.195

Allred-Rochow Electronegativity

1.44

Configuration Energy

electron volt units

10.44 eV

Pauling units

 1.76   

Allred Electronegativity

oxidation state: 2

2.00

Nagle Electronegativity

1.54

Pearson Absolute Electronegativity

4.91 eV

Smith Electronegativity

oxidation state: 2

1.95

Chemical Hardness

5.54 eV

Cohesive Energy

per mole

65 kJ/mol    

per atom

 0.67 eV/atom

Quantity

Mercury Thermodynamics

Notes

Melting Point

1 atm

234.3210 K

ITS-90 first-quality, secondary reference point (freezing point)

Boiling Point

1 atm

629.769 K

ITS-90 second-quality, secondary reference point

Thermal Conductivity

liquid

400 K

 9.84 W/(m K)

300 K

 8.34 W/(m K)

298.2 K

 8.30 W/(m K)

273.2 K

 7.82 W/(m K)

solid, 200 K

polycrystalline

28.9 W/(m K) 

parallel to trigonal-axis

34.0 W/(m K) 

perpendicular to trigonal-axis

26.4 W/(m K) 

see all 48 conductivities ...

Triple Point

234.3156 K

ITS-90 fixed point

Critical Point

1735 K

Vapor Pressure

355.9 °C

100 kPa

250.3 °C

10 kPa

175.6 °C

1 kPa

see all 16 pressures ...

Enthalpy of Fusion

1 atm

2.331 kJ/mol

Enthalpy of Vaporization

1 atm

59.15 kJ/mol

Isobaric Molar Heat Capacity

323.15 K, 50 MPa

27.751 J/(mol K)

318.15 K, 50 MPa

27.777 J/(mol K)

313.15 K, 50 MPa

27.803 J/(mol K)

308.15 K, 50 MPa

27.830 J/(mol K)

303.15 K, 50 MPa

27.857 J/(mol K)

298.15 K, 50 MPa

27.885 J/(mol K)

293.15 K, 50 MPa

27.914 J/(mol K)

see all 50 capacities ...

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.140 J/(g K)

Isochoric Molar Heat Capacity

323.15 K, 50 MPa

23.985 J/(mol K)

318.15 K, 50 MPa

24.050 J/(mol K)

313.15 K, 50 MPa

24.116 J/(mol K)

308.15 K, 50 MPa

24.182 J/(mol K)

303.15 K, 50 MPa

24.250 J/(mol K)

298.15 K, 50 MPa

24.318 J/(mol K)

293.15 K, 50 MPa

24.388 J/(mol K)

see all 49 capacities ...

Electronic Heat Capacity Coefficient

1.86 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

72 K

Room Temperature ( 298 K )

92 K

Quantity

Mercury Identification

Notes

CAS Number

7439-97-6

DOT Number

2809

metal

2809

ICSC Number

0056

RTECS Number

OV4550000

UN Number

2809

Quantity

Mercury Atomic Size

Notes

Atomic Radius

155 pm

Orbital Radius

112.6 pm

Pyykkö Covalent Radius

single bond

133 pm

double bond

142 pm

Cordero Covalent Radius

132 pm

Shannon-Prewitt Crystal Radius

ion charge: +1

coordination number: 3

111 pm

coordination number: 6

133 pm

ion charge: +2

coordination number: 2

 83 pm

coordination number: 4

110 pm

coordination number: 6

116 pm

coordination number: 8

128 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +1

coordination number: 3

 97 pm

coordination number: 6

119 pm

ion charge: +2

coordination number: 2

 69 pm

coordination number: 4

 96 pm

coordination number: 6

102 pm

coordination number: 8

114 pm

Pauling Empirical Crystal Radius

ion charge: +2

110 pm

Pauling Univalent Radius

ion charge: +1

125 pm

Batsanov Crystallographic Van Der Waals Radius

205 pm

Batsanov Equilibrium Van Der Waals Radius

225 pm

Bondi Van Der Waals Radius

170 pm

Slater Atomic-Ionic Radius

150 pm

Quantity

Mercury Crystal Structure

Notes

Allotropes

allotrope

α-mercury

symbol

αHg

allotrope

β-mercury

symbol

βHg

allotrope

γ-mercury

symbol

γHg

Nearest Neighbor Distance

227 K, 1 atm

301 pm

Atomic Concentration

227 K, 1 atm

4.26×1022 cm-3

Quantity

Mercury History

Notes

Discovery

date of discovery

circa 1500 BC

discoverer

unknown

location of discovery

unknown

Origin of Element Name

origin

Mercury

origin description

celestial body—planet

Origin of Element Symbol

symbol: Hg

origin

hydrargyrum

origin description

word—Latin for liquid silver

U.S. Towns Named After Elements

Mercury, Nevada

Formerly Used or Proposed Element Names and Symbols

symbol

Hy

Quantity

Mercury Abundances

Notes

Earth's Crust

8.5×10-2 ppm

Earth's Mantle

6 ppb

primitive mantle

Earth's Core

0.05 ppm

Bulk Earth

0.02 ppm

Ocean Water

5×10-5 ppm

Metalliferous Ocean Sediment

Ridge

0.4 ppm

River Water

7×10-5 ppm

U.S. Coal

0.17 ppm

Human Body

6 mg

based on a 70 kg "reference man"

Human Bone

0.45 ppm

Human Hair

1.2 ppm to 7.6 ppm

Human Kidney

0.3 ppm to 12 ppm

Human Liver

0.018 ppm to 3.7 ppm

Human Muscle

0.02 ppm to 0.7 ppm

Human Nail

0.07 ppm to 7 ppm

Fungi

0.7 ppm to 70 ppm

Solar System

0.34

number of atoms for every 106 atoms of silicon

Meteorites

1.16 ± 0.08

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Mercury Nomenclature

Notes

Element Names in Other Languages

French

mercure

German

Quecksilber

Italian

mercurio

Spanish

mercurio

Portuguese

mercúrio

Anions or Anionic Substituent Groups

mercuride

Cations or Cationic Substituent Groups

mercury (general)

Hg2+, mercury(2+)

Ligands

mercurido

Heteroatomic Anion

mercurate

'a' Term—Substitutive Nomenclature

mercura

'y' Term—Chains and Rings Nomenclature

mercury

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bondi, A. "Van der Waals Volumes and Radii of Metals in Covalent Compounds." The Journal of Physical Chemistry, volume 70, number 9, 1966, pp. 3006–3007. doi:10.1021/j100881a503

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Guminski, C. "The Melting and Boiling Points of Mercury (Hg)." Journal of Phase Equilibria and Diffusion, volume 13, number 4, 1992, p. 339. doi:10.1007/BF02674977

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Holman, G. J. F., and C. A. ten Seldam. "A Critical Evaluation of the Thermophysical Properties of Mercury." Journal of Physical and Chemical Reference Data, volume 23, number 5, 1994, pp. 807–827.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Mercury. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc00/icsc0056.htm. Accessed on May 4, 2010.

International Labour Organization (ILO). International Chemical Safety Card for Mercury. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc00/icsc0056.htm. Accessed on May 5, 2010.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kittel, Charles. Introduction to Solid State Physics, 5th edition. New York: John Wiley & Sons, Inc, 1976.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Mann, Joseph B., Terry L. Meek, Eugene T. Knight, Joseph F. Capitani, and Leland C. Allen. "Configuration Energies of the d-Block Elements." Journal of the American Chemical Society, volume 122, number 21, 2000, pp. 5132–5137. doi:10.1021/ja9928677

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Moore, Charlotte E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Washington, D.C.: National Bureau of Standards, 1970.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Mercury. http://www.cdc.gov/niosh/ipcsneng/neng0056.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Mercury. http://www.cdc.gov/niosh/ipcsneng/neng0056.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Mercury. http://www.cdc.gov/niosh-rtecs/ov456d70.html. Accessed on May 5, 2010.

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Preston-Thomas, H. "The International Temperature Scale of 1990 (ITS-90)." Metrologia, volume 27, number 1, 1990, pp. 3–10. doi:10.1088/0026-1394/27/1/002

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Roberts, B. W. "Survey of Superconductive Materials and Critical Evaluation of Selected Properties." Journal of Physical and Chemical Reference Data, volume 5, number 3, 1976, pp. 581–821.

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Speight, James G. Perry's Standard Tables and Formulas for Chemical Engineers. New York: The McGraw-Hill Companies, Inc., 2003.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

U. S. Department of Transportation (DOT), Transport Canada (TC), Secretariat of Transport and Communications of Mexico (SCT), and Centro de Información Química para Emergencias (CIQUIME). 2008 Emergency Response Guidebook.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more
(Link leaves KnowledgeDoor website)