Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads,
complex numbers, constants, advanced functions, user-defined keys, quick copy, and more! Learn more (Link leaves KnowledgeDoor website)

Samarium

Samarium Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Samarium Quick Reference

Click button to see citations

Notes

Symbol

Sm

Atomic Number

62

Atomic Weight

Rounded

150.36

for regular calculations

Standard

150.36 ± 0.02

for precise calculations

Oxidation States

3

more common

2

less common

Pauling Electronegativity

1.17

Electron Configuration

Orbital Occupancy

[Xe] 4f6 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f6

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

7F0

see expanded configuration ...

Ionization Energies

I   (1)

 5.6437 eV   

II  (2)

11.07 eV     

III (3)

23.4 ± 0.3 eV

IV  (4)

41.4 ± 0.7 eV

Density

liquid, 1347.15 K

7.160 g/ml 

solid, 25 °C

7.520 g/cm3

Molar Volume

solid, 298 K, 1 atm

19.98 cm3/mol

Melting Point

1346 ± 5 K

Boiling Point

1 atm

2067.15 K

Thermal Conductivity

solid

400 K, polycrystalline

13.3 W/(m K)

300 K, polycrystalline

13.3 W/(m K)

298.2 K, polycrystalline

13.3 W/(m K)

273.2 K, polycrystalline

13.3 W/(m K)

200 K, polycrystalline

11.3 W/(m K)

see all 29 conductivities ...

Pyykkö Covalent Radius

single bond

172 pm

double bond

134 pm

Atomic Radius

180 pm

Enthalpy of Fusion

1 atm

10.9 kJ/mol

Enthalpy of Vaporization

1 atm

191.6 kJ/mol

Quantity

Samarium Atomic Structure

Notes

Ionization Energies

I   (1)

 5.6437 eV   

II  (2)

11.07 eV     

III (3)

23.4 ± 0.3 eV

IV  (4)

41.4 ± 0.7 eV

Electron Binding Energies

K    (1s)

46834 eV  

LI   (2s)

 7737 eV  

LII  (2p1/2)

 7312 eV  

LIII (2p3/2)

 6716 eV  

see all 19 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f6 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f6

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

7F0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

60.7783

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

60.7783

Zeff = ζ × n

2s

Orbital Exponent

22.8674

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

45.7348

Zeff = ζ × n

see all 13 effective nuclear charges ...

Screening Percentage

92.3%

Fluorescence Yields

ωK

0.926

ωL1

0.075

ωL2

0.155

ωL3

0.15 

Coster-Kronig Yields

F12

0.19 

F13

0.25 

F23

0.154

Quantity

Samarium Physical Properties

Notes

Density

liquid, 1347.15 K

7.160 g/ml 

solid, 25 °C

7.520 g/cm3

Molar Mass

Rounded

150.36 g/mol

for regular calculations

Standard

150.36 ± 0.02 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

19.98 cm3/mol

Physical Form

silvery metal

Linear Thermal Expansion Coefficient

25 °C

12.7×10-6 K-1

Speed of Sound

solid, 293 K

2130 m/s

calculated value

Young's Modulus

α-samarium

49.7 GPa

Poisson's Ratio

α-samarium

0.274

Electrical Resistivity

solid, 295 K

99×10-8 Ohm m

Thermionic Work Function

3.2 eV

Vickers Hardness

cast, 293 K

412 MN/m2

annealed, 293 K

441 MN/m2

Isothermal Bulk Modulus

300 K

29.4 GPa

Isothermal Compressibility

300 K

0.0340 GPa-1

Gram Atomic Volume

20 cm3

Quantity

Samarium Atomic Interaction

Notes

Oxidation States

3

more common

2

less common

Pauling Electronegativity

1.17

Allred-Rochow Electronegativity

1.07

Allred Electronegativity

oxidation state: 2

1.17

Nagle Electronegativity

1.05

Smith Electronegativity

oxidation state: 4

1.1

oxidation state: 2

0.95

Cohesive Energy

per mole

206 kJ/mol    

per atom

  2.14 eV/atom

Quantity

Samarium Thermodynamics

Notes

Melting Point

1346 ± 5 K

Boiling Point

1 atm

2067.15 K

Thermal Conductivity

solid

400 K, polycrystalline

13.3 W/(m K)

300 K, polycrystalline

13.3 W/(m K)

298.2 K, polycrystalline

13.3 W/(m K)

273.2 K, polycrystalline

13.3 W/(m K)

200 K, polycrystalline

11.3 W/(m K)

see all 29 conductivities ...

Critical Point

5440 K

Vapor Pressure

1788 °C

100 kPa

1402 °C

10 kPa

1148 °C

1 kPa

967 °C

100 Pa

833 °C

10 Pa

728 °C

1 Pa

Neel Point

13.3 K

Enthalpy of Fusion

1 atm

10.9 kJ/mol

Enthalpy of Vaporization

1 atm

191.6 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

29.54 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.197 J/(g K)

Electronic Heat Capacity Coefficient

13.5 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

169 K

Room Temperature ( 298 K )

184 K

Quantity

Samarium Identification

Notes

CAS Number

7440-19-9

Quantity

Samarium Atomic Size

Notes

Atomic Radius

180 pm

Orbital Radius

185.4 pm

Pyykkö Covalent Radius

single bond

172 pm

double bond

134 pm

Cordero Covalent Radius

198 pm

Shannon-Prewitt Crystal Radius

ion charge: +2

coordination number: 7

136 pm  

coordination number: 8

141 pm  

coordination number: 9

146 pm  

ion charge: +3

coordination number: 6

109.8 pm

coordination number: 7

116 pm  

coordination number: 8

121.9 pm

coordination number: 9

127.2 pm

coordination number: 12

138 pm  

Shannon-Prewitt Effective Ionic Radius

ion charge: +2

coordination number: 7

122 pm  

coordination number: 8

127 pm  

coordination number: 9

132 pm  

ion charge: +3

coordination number: 6

 95.8 pm

coordination number: 7

102 pm  

coordination number: 8

107.9 pm

coordination number: 9

113.2 pm

coordination number: 12

124 pm  

Pauling Empirical Crystal Radius

ion charge: +3

104 pm

Slater Atomic-Ionic Radius

185 pm

Quantity

Samarium Crystal Structure

Notes

Allotropes

allotrope

α-samarium

symbol

αSm

allotrope

β-samarium

symbol

βSm

allotrope

γ-samarium

symbol

γSm

alternate symbol

γ'Sm

Nearest Neighbor Distance

300 K, 1 atm

359 pm

Atomic Concentration

300 K, 1 atm

3.03×1022 cm-3

Quantity

Samarium History

Notes

Discovery

date of discovery

1879

discoverer

Paul-Émile Lecoq de Boisbaudran

birth

April 18, 1838

death

May 28, 1912

location of discovery

Paris, France

Origin of Element Name

origin

samarskite

origin description

mineral

Origin of Element Symbol

symbol: Sm

origin

samarium

origin description

element name

Formerly Used or Proposed Element Names and Symbols

symbol

Sa

Quantity

Samarium Abundances

Notes

Earth's Crust

7.05 ppm

Earth's Mantle

431 ppb

primitive mantle

Bulk Earth

0.27 ppm

Ocean Water

4.5×10-7 ppm

Metalliferous Ocean Sediment

Basal

18.6 ppm

Ridge

5 ppm

U.S. Coal

1.7 ppm

Ferns

0.1 ppm to 0.8 ppm

Solar System

0.2582

number of atoms for every 106 atoms of silicon

Sun

1.01 ± 0.06

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

0.98 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Samarium Nomenclature

Notes

Element Names in Other Languages

French

samarium

German

Samarium

Italian

samario

Spanish

samario

Portuguese

samário

Anions or Anionic Substituent Groups

samaride

Cations or Cationic Substituent Groups

samarium

Ligands

samarido

Heteroatomic Anion

samarate

'a' Term—Substitutive Nomenclature

samara

'y' Term—Chains and Rings Nomenclature

samary

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Filyand, M. A., and E. I. Semenova. Handbook of the Rare Elements: Radioactive Elements and Rare Earth Elements, volume 3. Translated by Michael E. Alferieff. London: Oldbourne Book Co. Ltd., 1970.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Herchenroeder, J. W., and K. A. Gschneidner. "Stable, Metastable and Nonexistent Allotropes." Journal of Phase Equilibria, volume 9, number 1, 1988, pp. 2–12. doi:10.1007/BF02877443

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

King, H. W. "Temperature-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 3, number 2, 1982, pp. 275–276. doi:10.1007/BF02892394

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Konings, Rudy J. M., and Ondrej Beneš. "The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals." Journal of Physical and Chemical Reference Data, volume 39, number 4, 2010, pp. 043102–1 to 043102–47. doi:10.1063/1.3474238

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Martin, W. C., Romuald Zalubas, and Lucy Hagan. Atomic Energy Levels—The Rare-Earth Elements. Washington, D.C.: National Bureau of Standards, 1978.

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Tonkov, E. Yu, and E. G. Ponyatovsky. Phase Transformations of Elements Under High Pressure. Advances in Metallic Alloys 4. Edited by J. N. Fridlyander and D. G. Eskin. Boca Raton, Florida: CRC Press LLC, 2005.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more (Link leaves KnowledgeDoor website)