Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads, complex numbers, constants, advanced functions, user-defined keys, quick copy, and
more! Learn more (Link leaves KnowledgeDoor website)

Silver

Silver Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Silver Quick Reference

Click button to see citations

Notes

Symbol

Ag

Atomic Number

47

Atomic Weight

Rounded

107.87

for regular calculations

Standard

107.8682 ± 0.0002

for precise calculations

Oxidation States

3

less common

2

less common

1

more common

0

less common

Pauling Electronegativity

oxidation state: 1

1.93

Electron Configuration

Orbital Occupancy

[Kr] 4d10 5s1

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s1 4d10

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

2S1/2

see expanded configuration ...

Ionization Energies

I   (1)

 7.57623 eV

II  (2)

21.47746 eV

III (3)

34.83 eV   

Electron Affinity

1.30447 ± 0.00002 eV

10521.3 ± 0.2 cm-1  

Density

liquid, 1234.00 K

 9.296 g/ml 

solid, 25 °C

10.500 g/cm3

Molar Volume

solid, 298 K, 1 atm

10.27 cm3/mol

Melting Point

1 atm

1234.93 K

ITS-90 fixed point (freezing point)

Boiling Point

1 atm

2485.00 K

Thermal Conductivity

solid

400 K

425 W/(m K)

300 K

429 W/(m K)

298.2 K

429 W/(m K)

273.2 K

429 W/(m K)

200 K

430 W/(m K)

see all 46 conductivities ...

Pyykkö Covalent Radius

single bond

128 pm

double bond

139 pm

triple bond

137 pm

Atomic Radius

144 pm

Enthalpy of Fusion

1 atm

11.3 kJ/mol

Enthalpy of Vaporization

1 atm

255.1 kJ/mol

Quantity

Silver Atomic Structure

Notes

Ionization Energies

I   (1)

 7.57623 eV

II  (2)

21.47746 eV

III (3)

34.83 eV   

Electron Affinity

1.30447 ± 0.00002 eV

10521.3 ± 0.2 cm-1  

Electron Binding Energies

K    (1s)

25514 eV  

LI   (2s)

 3806 eV  

LII  (2p1/2)

 3524 eV  

LIII (2p3/2)

 3351 eV  

see all 12 energies ...

Electron Configuration

Orbital Occupancy

[Kr] 4d10 5s1

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s1 4d10

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

2S1/2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

46.0423

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

46.0423

Zeff = ζ × n

2s

Orbital Exponent

17.3171

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

34.6342

Zeff = ζ × n

see all 10 effective nuclear charges ...

Screening Percentage

84.7%

Fluorescence Yields

ωK

0.831

ωL1

0.016

ωL2

0.051

ωL3

0.052

Coster-Kronig Yields

F12

0.10 

F13

0.57 

F23

0.141

Quantity

Silver Physical Properties

Notes

Density

liquid, 1234.00 K

 9.296 g/ml 

solid, 25 °C

10.500 g/cm3

Molar Mass

Rounded

107.87 g/mol

for regular calculations

Standard

107.8682 ± 0.0002 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

10.27 cm3/mol

Physical Form

silvery metal

Linear Thermal Expansion Coefficient

25 °C

18.9×10-6 K-1

283 K

18.80×10-6 K-1

85 K

13.38×10-6 K-1

75 K

12.29×10-6 K-1

65 K

10.93×10-6 K-1

57.5 K

9.66×10-6 K-1

see all 30 coefficients ...

Speed of Sound

liquid, 1150 °C, longitudinal wave

2630 m/s

solid

20 °C

longitudinal wave

3704 m/s

shear wave

1698 m/s

283 K

2730 m/s

see all 9 speeds of sound ...

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

10.49

Young's Modulus

82.7 GPa

Poisson's Ratio

0.367

Electrical Resistivity

solid

200 K

1.029×10-8 Ohm m

273.15 K

1.467×10-8 Ohm m

293 K

1.587×10-8 Ohm m

300 K

1.629×10-8 Ohm m

400 K

2.241×10-8 Ohm m

see all 44 resistivities ...

Contact Potential

4.44 eV

Photoelectric Work Function

4.73 eV

Thermionic Work Function

3.56 eV

Mineralogical Hardness

2.5

Vickers Hardness

293 K

251 MN/m2

483 K

293 MN/m2

see all 5 hardnesses ...

Reflectivity

chemically deposited; surface polished

0.450 μm

90.5%

0.550 μm

92.7%

0.650 μm

94.7%

see all 19 reflectivities ...

Isothermal Bulk Modulus

300 K

100.7 GPa

Isothermal Compressibility

300 K

0.00993 GPa-1

Gram Atomic Volume

10 cm3

Quantity

Silver Atomic Interaction

Notes

Oxidation States

3

less common

2

less common

1

more common

0

less common

Pauling Electronegativity

oxidation state: 1

1.93

Mulliken-Jaffe Electronegativity

oxidation state: 1, orbitals

1.47

Sanderson Electronegativity

oxidation state: 1

1.826

Allred-Rochow Electronegativity

oxidation state: 1

1.42

Configuration Energy

electron volt units

11.05 eV

Pauling units

 1.87   

Allred Electronegativity

oxidation state: 1

1.93

Ghosh-Gupta Electronegativity

3.6842 eV

Nagle Electronegativity

1.45

Pearson Absolute Electronegativity

4.44 eV

Smith Electronegativity

oxidation state: 1

1.9

Free Electron Fermi Surface Parameters

300 K

electron concentration

5.85×1022 cm-3

radius parameter

3.02

fermi wavevector

1.20×108 cm-1

fermi velocity

1.39×108 cm/s

fermi energy

5.48 eV

fermi temperature

6.36×104 K

Chemical Hardness

3.14 eV

Cohesive Energy

per mole

284 kJ/mol    

per atom

  2.95 eV/atom

Quantity

Silver Thermodynamics

Notes

Melting Point

1 atm

1234.93 K

ITS-90 fixed point (freezing point)

Boiling Point

1 atm

2485.00 K

Thermal Conductivity

solid

400 K

425 W/(m K)

300 K

429 W/(m K)

298.2 K

429 W/(m K)

273.2 K

429 W/(m K)

200 K

430 W/(m K)

see all 46 conductivities ...

Critical Point

7480 K

Vapor Pressure

2160 °C

100 kPa

1782 °C

10 kPa

1509 °C

1 kPa

see all 16 pressures ...

Neel Point

560 pK

silver-109

700 ± 80 pK

Enthalpy of Fusion

1 atm

11.3 kJ/mol

Enthalpy of Vaporization

1 atm

255.1 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

25.350 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.235 J/(g K)

Electronic Heat Capacity Coefficient

0.64 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

227.3 K

Room Temperature ( 298 K )

221 K  

Quantity

Silver Identification

Notes

CAS Number

7440-22-4

ICSC Number

0810

RTECS Number

VW3500000

Quantity

Silver Atomic Size

Notes

Atomic Radius

144 pm

Orbital Radius

128.6 pm

Pyykkö Covalent Radius

single bond

128 pm

double bond

139 pm

triple bond

137 pm

Cordero Covalent Radius

145 pm

Shannon-Prewitt Crystal Radius

ion charge: +1

coordination number: 2

 81 pm

coordination number: 4

114 pm

square planer

116 pm

coordination number: 5

123 pm

coordination number: 6

129 pm

coordination number: 7

136 pm

coordination number: 8

142 pm

ion charge: +2

coordination number: 4, square planer

 93 pm

coordination number: 6

108 pm

ion charge: +3

coordination number: 4, square planer

 81 pm

coordination number: 6

 89 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +1

coordination number: 2

 67 pm

coordination number: 4

100 pm

square planer

102 pm

coordination number: 5

109 pm

coordination number: 6

115 pm

coordination number: 7

122 pm

coordination number: 8

128 pm

ion charge: +2

coordination number: 4, square planer

 79 pm

coordination number: 6

 94 pm

ion charge: +3

coordination number: 4, square planer

 67 pm

coordination number: 6

 75 pm

Pauling Empirical Crystal Radius

ion charge: +1

126 pm

Pauling Univalent Radius

ion charge: +1

126 pm

Batsanov Crystallographic Van Der Waals Radius

2.1×102 pm

Batsanov Equilibrium Van Der Waals Radius

237 pm

Bondi Van Der Waals Radius

172 pm

Slater Atomic-Ionic Radius

160 pm

Quantity

Silver Crystal Structure

Notes

Nearest Neighbor Distance

300 K, 1 atm

289 pm

Atomic Concentration

300 K, 1 atm

5.85×1022 cm-3

Quantity

Silver History

Notes

Discovery

date of discovery

circa 5000 BC

discoverer

unknown

location of discovery

unknown

Origin of Element Name

origin

seolfor, siolfur

origin description

word—Anglo-Saxon for silver

Origin of Element Symbol

symbol: Ag

origin

argentum

origin description

word—Latin for silver

U.S. Towns Named After Elements

Silver, South Carolina

Quantity

Silver Abundances

Notes

Earth's Crust

7.5×10-2 ppm

Earth's Mantle

4 ppb

primitive mantle

Earth's Core

0.15 ppm

Bulk Earth

0.05 ppm

Ocean Water

0.0001 ppm

Metalliferous Ocean Sediment

Basal

0.18 ppm

Ridge

6.2 ppm

River Water

0.0003 ppm

U.S. Coal

<0.1 ppm

estimated from USGS and literature data

Human Body

2 mg

based on a 70 kg "reference man"

Human Bone

0.01 ppm to 0.44 ppm

Human Hair

0.005 ppm to 3.8 ppm

Human Kidney

0.005 ppm to 0.26 ppm

Human Liver

0.005 ppm to 0.25 ppm

Human Muscle

0.009 ppm to 0.28 ppm

Human Nail

0.003 ppm to 1.4 ppm

Ferns

0.81 ppm

Fungi

0.18 ppm to 7 ppm

Solar System

0.486

number of atoms for every 106 atoms of silicon

Sun

0.94 ± 0.25

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

1.23 ± 0.04

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Silver Nomenclature

Notes

Element Names in Other Languages

French

argent

German

Silber

Italian

argento

Spanish

plata

Portuguese

prata

Anions or Anionic Substituent Groups

argentide

Cations or Cationic Substituent Groups

silver

Ligands

argentido

Heteroatomic Anion

argentate

'a' Term—Substitutive Nomenclature

argenta

'y' Term—Chains and Rings Nomenclature

argenty

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Ball, David W. "Elemental Etymology: What's in a Name?" Journal of Chemical Education, volume 62, number 9, 1985, pp. 787–788. doi:10.1021/ed062p787

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cronan, D. S. "Basal Metalliferous Sediments from the Eastern Pacific." Geological Society of America Bulletin, volume 87, number 6, 1976, pp. 928–934. doi:10.1130/0016-7606(1976)87<928:BMSFTE>2.0.CO;2

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Ho, Joe, Kent M. Ervin, and W. C. Lineberger. "Photoelectron Spectroscopy of Metal Cluster Anions: Cu-n, Ag-n, and Au-n." Journal of Chemical Physics, volume 93, number 10, 1990, pp. 6987–7002. doi:10.1063/1.459475

Höhne, G. W. H., W. F. Hemminger, and H.-J. Flammersheim. Differential Scanning Calorimetry, 2nd edition. Berlin: Springer–Verlag, 2003.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Hotop, H., and W. C. Lineberger. "Binding Energies in Atomic Negative Ions: II." Journal of Physical and Chemical Reference Data, volume 14, number 3, 1985, pp. 731–750.

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Silver. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc08/icsc0810.htm. Accessed on May 4, 2010.

Kaxiras, Efthimios. Atomic and Electronic Structure of Solids. Cambridge: Cambridge University Press, 2003.

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, Eugene T. Knight, Joseph F. Capitani, and Leland C. Allen. "Configuration Energies of the d-Block Elements." Journal of the American Chemical Society, volume 122, number 21, 2000, pp. 5132–5137. doi:10.1021/ja9928677

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Matula, R. A. "Electrical Resistivity of Copper, Gold, Palladium, and Silver." Journal of Physical and Chemical Reference Data, volume 8, number 4, 1979, pp. 1147–1298.

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Moore, Charlotte E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Washington, D.C.: National Bureau of Standards, 1970.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Silver. http://www.cdc.gov/niosh/ipcsneng/neng0810.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Silver. http://www.cdc.gov/niosh-rtecs/vw3567e0.html. Accessed on May 5, 2010.

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Nummila, Kaj K., Juha T. Tuoriniemi, Reko T. Vuorinen, Kim Lefmann, Albert Metz, and Finn B. Rasmussen. "Neutron Diffraction Studies of Nuclear Magnetic Ordering in Silver." Journal of Low Temperature Physics, volume 112, number 1-2, 1998, pp. 73–116. doi:10.1023/A:1022293912218

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Preston-Thomas, H. "The International Temperature Scale of 1990 (ITS-90)." Metrologia, volume 27, number 1, 1990, pp. 3–10. doi:10.1088/0026-1394/27/1/002

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

White, G. K., and J. G. Collins. "Thermal Expansion of Copper, Silver, and Gold at Low Temperatures." Journal of Low Temperature Physics, volume 7, number 1-2, 1972, pp. 43–75. doi:10.1007/BF00629120

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Zefirov, Yu. V. "Comparative Analysis of Systems of van der Waals Radii." Crystallography Reports, volume 42, number 1, 1997, pp. 111–116.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more (Link leaves KnowledgeDoor website)