Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads,
complex numbers, constants, advanced functions, user-defined keys, quick copy, and more! Learn more (Link leaves KnowledgeDoor website)

Lanthanum

Lanthanum Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Lanthanum Quick Reference

Click button to see citations

Notes

Symbol

La

Atomic Number

57

Atomic Weight

Rounded

138.91

for regular calculations

Standard

138.90547 ± 0.00007

for precise calculations

Oxidation States

3

more common

2

less common

Pauling Electronegativity

1.10

Electron Configuration

Orbital Occupancy

[Xe] 5d1 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 5d1

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

2D3/2

see expanded configuration ...

Ionization Energies

I   (1)

 5.5769 eV         

II  (2)

11.059 eV          

III (3)

19.1774 ± 0.0006 eV

IV  (4)

49.95 ± 0.06 eV    

V   (5)

61.6 ± 0.6 eV      

Electron Affinity

0.47 ± 0.02 eV 

3790 ± 160 cm-1

Density

liquid, 1191.15 K

5.960 g/ml 

solid, 25 °C

6.150 g/cm3

Molar Volume

solid, 298 K, 1 atm

22.386 cm3/mol

Melting Point

1192 ± 1 K

Boiling Point

1 atm

3737.15 K

Thermal Conductivity

solid

400 K, polycrystalline

14.9 W/(m K)

300 K, polycrystalline

13.5 W/(m K)

298.2 K, polycrystalline

13.4 W/(m K)

273.2 K, polycrystalline

13.1 W/(m K)

200 K, polycrystalline

11.8 W/(m K)

see all 37 conductivities ...

Pyykkö Covalent Radius

single bond

180 pm

double bond

139 pm

triple bond

139 pm

Atomic Radius

188 pm

Enthalpy of Fusion

1 atm

10.04 kJ/mol

Enthalpy of Vaporization

1 atm

399.6 kJ/mol

Quantity

Lanthanum Atomic Structure

Notes

Ionization Energies

I   (1)

 5.5769 eV         

II  (2)

11.059 eV          

III (3)

19.1774 ± 0.0006 eV

IV  (4)

49.95 ± 0.06 eV    

V   (5)

61.6 ± 0.6 eV      

Electron Affinity

0.47 ± 0.02 eV 

3790 ± 160 cm-1

Electron Binding Energies

K    (1s)

38925 eV  

LI   (2s)

 6266 eV  

LII  (2p1/2)

 5891 eV  

LIII (2p3/2)

 5483 eV  

see all 17 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 5d1 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 5d1

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

2D3/2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

55.8683

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

55.8683

Zeff = ζ × n

2s

Orbital Exponent

20.9767

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

41.9534

Zeff = ζ × n

see all 13 effective nuclear charges ...

Screening Percentage

94.1%

Fluorescence Yields

ωK

0.905

ωL1

0.055

ωL2

0.103

ωL3

0.104

Coster-Kronig Yields

F12

0.19 

F13

0.25 

F23

0.159

Quantity

Lanthanum Physical Properties

Notes

Density

liquid, 1191.15 K

5.960 g/ml 

solid, 25 °C

6.150 g/cm3

Molar Mass

Rounded

138.91 g/mol

for regular calculations

Standard

138.90547 ± 0.00007 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

22.386 cm3/mol

Physical Form

silvery metal

Linear Thermal Expansion Coefficient

25 °C

12.1×10-6 K-1

Speed of Sound

α-lanthanum, solid, 293 K

2460 m/s to 2490 m/s

calculated value

Young's Modulus

α-lanthanum

36.6 GPa

Poisson's Ratio

α-lanthanum

0.280

Electrical Resistivity

solid, 295 K

79×10-8 Ohm m

Thermionic Work Function

3.3 eV

Superconducting Transition Temperature

15 GPa

13 K   

maximum temperature

α-lanthanum

4.88 ± 0.02 K

β-lanthanum

ambient pressure

 6.00 K

0 Pa

 6.00 K

Superconducting Critical Magnetic Field at Absolute Zero

β-lanthanum

1100×10-4 T

Superconducting Energy Gap

β-lanthanum, 0 K

19×10-4 eV

Mineralogical Hardness

2.5

Vickers Hardness

cast, 293 K

491 MN/m2

Isothermal Bulk Modulus

300 K

24.3 GPa

Isothermal Compressibility

300 K

0.0412 GPa-1

Gram Atomic Volume

22 cm3

Quantity

Lanthanum Atomic Interaction

Notes

Oxidation States

3

more common

2

less common

Pauling Electronegativity

1.10

Allred-Rochow Electronegativity

1.08

Allred Electronegativity

oxidation state: 3

1.10

Nagle Electronegativity

1.04

Pearson Absolute Electronegativity

3.1 eV

Smith Electronegativity

oxidation state: 3

1.15

Chemical Hardness

2.6 eV

Cohesive Energy

per mole

431 kJ/mol    

per atom

  4.47 eV/atom

Quantity

Lanthanum Thermodynamics

Notes

Melting Point

1192 ± 1 K

Boiling Point

1 atm

3737.15 K

Thermal Conductivity

solid

400 K, polycrystalline

14.9 W/(m K)

300 K, polycrystalline

13.5 W/(m K)

298.2 K, polycrystalline

13.4 W/(m K)

273.2 K, polycrystalline

13.1 W/(m K)

200 K, polycrystalline

11.8 W/(m K)

see all 37 conductivities ...

Critical Point

10500 K

Vapor Pressure

3453 °C

100 kPa

2905 °C

10 kPa

2499 °C

1 kPa

2185 °C

100 Pa

1935 °C

10 Pa

1732 °C

1 Pa

Enthalpy of Fusion

1 atm

10.04 kJ/mol

Enthalpy of Vaporization

1 atm

399.6 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

27.11 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.195 J/(g K)

Electronic Heat Capacity Coefficient

α-lanthanum

 9.45 mJ/(mol K2)

β-lanthanum

11.5 mJ/(mol K2) 

Debye Temperature

Room Temperature ( 298 K )

135 K

α-lanthanum, Low Temperature Limit ( 0 K )

150 K

β-lanthanum, Low Temperature Limit ( 0 K )

140 K

Quantity

Lanthanum Identification

Notes

CAS Number

7439-91-0

Quantity

Lanthanum Atomic Size

Notes

Atomic Radius

188 pm

Orbital Radius

191.5 pm

Pyykkö Covalent Radius

single bond

180 pm

double bond

139 pm

triple bond

139 pm

Cordero Covalent Radius

207 pm

Shannon-Prewitt Crystal Radius

ion charge: +3

coordination number: 6

117.2 pm

coordination number: 7

124 pm  

coordination number: 8

130.0 pm

coordination number: 9

135.6 pm

coordination number: 10

141 pm  

coordination number: 12

150 pm  

Shannon-Prewitt Effective Ionic Radius

ion charge: +3

coordination number: 6

103.2 pm

coordination number: 7

110 pm  

coordination number: 8

116.0 pm

coordination number: 9

121.6 pm

coordination number: 10

127 pm  

coordination number: 12

136 pm  

Pauling Empirical Crystal Radius

ion charge: +3

115 pm

Pauling Univalent Radius

ion charge: +1

139 pm

Batsanov Crystallographic Van Der Waals Radius

2.5×102 pm

Batsanov Equilibrium Van Der Waals Radius

281 pm

Slater Atomic-Ionic Radius

195 pm

Quantity

Lanthanum Crystal Structure

Notes

Allotropes

allotrope

α-lanthanum

symbol

αLa

allotrope

β-lanthanum

symbol

βLa

allotrope

γ-lanthanum

symbol

γLa

allotrope

β'-lanthanum

symbol

β'La

Nearest Neighbor Distance

300 K, 1 atm

373 pm

Atomic Concentration

300 K, 1 atm

2.70×1022 cm-3

Quantity

Lanthanum History

Notes

Discovery

date of discovery

1839

discoverer

Carl Gustav Mosander

birth

September 10, 1797

death

October 15, 1858

location of discovery

Stockholm, Sweden

Origin of Element Name

origin

lanthanein

origin description

property—Greek for to lie hidden

Origin of Element Symbol

symbol: La

origin

lanthanum

origin description

element name

Quantity

Lanthanum Abundances

Notes

Earth's Crust

3.9×101 ppm

Earth's Mantle

686 ppb

primitive mantle

Bulk Earth

0.44 ppm

Ocean Water

3.4×10-6 ppm

Metalliferous Ocean Sediment

Basal

98 ppm

Ridge

29 ppm

River Water

0.0002 ppm

U.S. Coal

12 ppm

Human Body

0.8 mg

based on a 70 kg "reference man"

Human Hair

0.15 ppm to 0.65 ppm

Human Kidney

0.013 ppm

Human Liver

0.3 ppm

Human Muscle

0.0004 ppm

Human Nail

0.3 ppm

Ferns

1.5 ppm to 15 ppm

Solar System

0.4460

number of atoms for every 106 atoms of silicon

Sun

1.17 ± 0.07

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

1.22 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Lanthanum Nomenclature

Notes

Element Names in Other Languages

French

lanthane

German

Lanthan

Italian

lantanio

Spanish

lantano

Portuguese

lantânio

Anions or Anionic Substituent Groups

lanthanide

Cations or Cationic Substituent Groups

lanthanum

Ligands

lanthanido

Heteroatomic Anion

lanthanate

'a' Term—Substitutive Nomenclature

lanthana

'y' Term—Chains and Rings Nomenclature

lanthany

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Ball, David W. "Elemental Etymology: What's in a Name?" Journal of Chemical Education, volume 62, number 9, 1985, pp. 787–788. doi:10.1021/ed062p787

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Filyand, M. A., and E. I. Semenova. Handbook of the Rare Elements: Radioactive Elements and Rare Earth Elements, volume 3. Translated by Michael E. Alferieff. London: Oldbourne Book Co. Ltd., 1970.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Herchenroeder, J. W., and K. A. Gschneidner. "Stable, Metastable and Nonexistent Allotropes." Journal of Phase Equilibria, volume 9, number 1, 1988, pp. 2–12. doi:10.1007/BF02877443

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

King, H. W. "Temperature-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 3, number 2, 1982, pp. 275–276. doi:10.1007/BF02892394

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kittel, Charles. Introduction to Solid State Physics, 5th edition. New York: John Wiley & Sons, Inc, 1976.

Konings, Rudy J. M., and Ondrej Beneš. "The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals." Journal of Physical and Chemical Reference Data, volume 39, number 4, 2010, pp. 043102–1 to 043102–47. doi:10.1063/1.3474238

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Martin, W. C., Romuald Zalubas, and Lucy Hagan. Atomic Energy Levels—The Rare-Earth Elements. Washington, D.C.: National Bureau of Standards, 1978.

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Roberts, B. W. "Survey of Superconductive Materials and Critical Evaluation of Selected Properties." Journal of Physical and Chemical Reference Data, volume 5, number 3, 1976, pp. 581–821.

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Soukhanov, Anne H., editor. The American Heritage Dictionary Of The English Language, 3rd edition. Boston: Houghton Mifflin Company, 1992.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more
(Link leaves KnowledgeDoor website)