Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads,
complex numbers, constants, advanced functions, user-defined keys, quick copy, and more! Learn more (Link leaves KnowledgeDoor website)

Titanium

Titanium Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Titanium Quick Reference

Click button to see citations

Notes

Symbol

Ti

Atomic Number

22

Atomic Weight

Rounded

47.867

for regular calculations

Standard

47.867 ± 0.001

for precise calculations

Oxidation States

 4

more common

 3

less common with disagreement

 2

less common with disagreement

 0

less common

-1

less common

-2

less common

Pauling Electronegativity

oxidation state: 2

1.54

Electron Configuration

Orbital Occupancy

[Ar] 3d2 4s2

[Ar] represents the closed-shell electron configuration of argon

Orbital Filling Order

[Ar] 4s2 3d2

[Ar] represents the closed-shell electron configuration of argon

Term Symbol

3F2

see expanded configuration ...

Ionization Energies

I   (1)

 6.82812 eV        

II  (2)

13.5755 eV         

III (3)

27.4919 ± 0.0002 eV

IV  (4)

43.2675 ± 0.0002 eV

see all 22 energies ...

Electron Affinity

0.084 ± 0.009 eV

  680 ± 70 cm-1 

Density

15500 K, 0.7 GPa

0.5 g/cm3  

critical point, predicted for the vapor and the insulating liquid region

liquid, 1941.15 K

4.110 g/ml 

solid, 25 °C

4.506 g/cm3

Molar Volume

solid, 298 K, 1 atm

10.64 cm3/mol

Melting Point

1 atm

1943 K

ITS-90 second-quality, secondary reference point (melting point)

Boiling Point

1 atm

3560.15 K

Thermal Conductivity

solid

400 K, polycrystalline

20.4 W/(m K)

300 K, polycrystalline

21.9 W/(m K)

298.2 K, polycrystalline

21.9 W/(m K)

273.2 K, polycrystalline

22.4 W/(m K)

200 K, polycrystalline

24.5 W/(m K)

see all 46 conductivities ...

Pyykkö Covalent Radius

single bond

136 pm

double bond

117 pm

triple bond

108 pm

Atomic Radius

147 pm

Enthalpy of Fusion

1 atm

20.9 kJ/mol

Enthalpy of Vaporization

1 atm

428.9 kJ/mol

Quantity

Titanium Atomic Structure

Notes

Ionization Energies

I   (1)

 6.82812 eV        

II  (2)

13.5755 eV         

III (3)

27.4919 ± 0.0002 eV

IV  (4)

43.2675 ± 0.0002 eV

see all 22 energies ...

Electron Affinity

0.084 ± 0.009 eV

  680 ± 70 cm-1 

Electron Binding Energies

K    (1s)

4966 eV  

LI   (2s)

 560.9 eV

LII  (2p1/2)

 460.2 eV

LIII (2p3/2)

 453.8 eV

see all 7 energies ...

Electron Configuration

Orbital Occupancy

[Ar] 3d2 4s2

[Ar] represents the closed-shell electron configuration of argon

Orbital Filling Order

[Ar] 4s2 3d2

[Ar] represents the closed-shell electron configuration of argon

Term Symbol

3F2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

21.4409

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

21.4409

Zeff = ζ × n

2s

Orbital Exponent

 7.6883

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

15.377 

Zeff = ζ × n

see all 7 effective nuclear charges ...

Screening Percentage

82.5%

Fluorescence Yields

ωK

0.226  

ωL1

0.00047

ωL2

0.0015 

ωL3

0.0015 

Coster-Kronig Yields

F12

0.31

F13

0.59

Quantity

Titanium Physical Properties

Notes

Density

15500 K, 0.7 GPa

0.5 g/cm3  

critical point, predicted for the vapor and the insulating liquid region

liquid, 1941.15 K

4.110 g/ml 

solid, 25 °C

4.506 g/cm3

Molar Mass

Rounded

47.867 g/mol

for regular calculations

Standard

47.867 ± 0.001 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

10.64 cm3/mol

Physical Form

gray metal

Linear Thermal Expansion Coefficient

25 °C

8.6×10-6 K-1

Speed of Sound

solid

room temperature, longitudinal wave

6070 m/s

room temperature, shear wave

3125 m/s

room temperature, extensional wave

5090 m/s

20 °C

longitudinal wave

6130 m/s

shear wave

3182 m/s

Young's Modulus

α-titanium

120.2 GPa

Poisson's Ratio

α-titanium

0.361

Electrical Resistivity

solid, 295 K

43.1×10-8 Ohm m

Contact Potential

4.14 eV

Photoelectric Work Function

4.06 eV

Thermionic Work Function

3.95 eV

Superconducting Transition Temperature

ambient pressure

0.39 K

56.0 GPa

3.35 K

maximum temperature

0 Pa

0.39 K

α-titanium

0.38 K

β-titanium

6.4 K 

Superconducting Critical Magnetic Field at Absolute Zero

100×10-4 T

Mineralogical Hardness

6.0

Vickers Hardness

iodide, purity - 99.9%

293 K

971 MN/m2

673 K

491 MN/m2

see all 6 hardnesses ...

Isothermal Bulk Modulus

300 K

105.1 GPa

Isothermal Compressibility

300 K

0.00951 GPa-1

Gram Atomic Volume

11 cm3

Quantity

Titanium Atomic Interaction

Notes

Oxidation States

 4

more common

 3

less common with disagreement

 2

less common with disagreement

 0

less common

-1

less common

-2

less common

Pauling Electronegativity

oxidation state: 2

1.54

Sanderson Electronegativity

oxidation state: 4

1.50

oxidation state: 3

1.09

oxidation state: 2

0.73

Allred-Rochow Electronegativity

oxidation state: 4

1.32

Configuration Energy

electron volt units

8.170 eV

Pauling units

1.38    

Allred Electronegativity

oxidation state: 2

1.54

Ghosh-Gupta Electronegativity

3.0040 eV

Nagle Electronegativity

1.23

Pearson Absolute Electronegativity

3.45 eV

Smith Electronegativity

oxidation state: 4

1.65

oxidation state: 3

1.5

Chemical Hardness

3.37 eV

Cohesive Energy

per mole

468 kJ/mol    

per atom

  4.85 eV/atom

Quantity

Titanium Thermodynamics

Notes

Melting Point

1 atm

1943 K

ITS-90 second-quality, secondary reference point (melting point)

Boiling Point

1 atm

3560.15 K

Thermal Conductivity

solid

400 K, polycrystalline

20.4 W/(m K)

300 K, polycrystalline

21.9 W/(m K)

298.2 K, polycrystalline

21.9 W/(m K)

273.2 K, polycrystalline

22.4 W/(m K)

200 K, polycrystalline

24.5 W/(m K)

see all 46 conductivities ...

Critical Point

temperature

15500 K

predicted for the vapor and the insulating liquid region

pressure

0.7 GPa

Vapor Pressure

3285 °C

100 kPa

2791 °C

10 kPa

2419 °C

1 kPa

2130 °C

100 Pa

1898 °C

10 Pa

1709 °C

1 Pa

Enthalpy of Fusion

1 atm

20.9 kJ/mol

Enthalpy of Vaporization

1 atm

428.9 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

25.060 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.523 J/(g K)

Electronic Heat Capacity Coefficient

3.36 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

420 K

Room Temperature ( 298 K )

380 K

Quantity

Titanium Identification

Notes

CAS Number

7440-32-6

DOT Number

powder, dry

2546

sponge granules

2878

sponge powders

2878

Quantity

Titanium Atomic Size

Notes

Atomic Radius

147 pm

Orbital Radius

147.7 pm

Pyykkö Covalent Radius

single bond

136 pm

double bond

117 pm

triple bond

108 pm

Cordero Covalent Radius

160 pm

Shannon-Prewitt Crystal Radius

ion charge: +2, coordination number: 6

100 pm  

ion charge: +3, coordination number: 6

 81.0 pm

ion charge: +4

coordination number: 4

 56 pm  

coordination number: 5

 65 pm  

coordination number: 6

 74.5 pm

coordination number: 8

 88 pm  

Shannon-Prewitt Effective Ionic Radius

ion charge: +2, coordination number: 6

86 pm  

ion charge: +3, coordination number: 6

67.0 pm

ion charge: +4

coordination number: 4

42 pm  

coordination number: 5

51 pm  

coordination number: 6

60.5 pm

coordination number: 8

74 pm  

Pauling Empirical Crystal Radius

ion charge: +4

68 pm

ion charge: +3

76 pm

ion charge: +2

90 pm

Pauling Univalent Radius

ion charge: +1

96 pm

Batsanov Crystallographic Van Der Waals Radius

215 pm

Batsanov Equilibrium Van Der Waals Radius

244 pm

Slater Atomic-Ionic Radius

140 pm

Quantity

Titanium Crystal Structure

Notes

Allotropes

allotrope

α-titanium

symbol

αTi

allotrope

β-titanium

symbol

βTi

allotrope

ω-titanium

symbol

ωTi

Nearest Neighbor Distance

300 K, 1 atm

289 pm

Atomic Concentration

300 K, 1 atm

5.66×1022 cm-3

Quantity

Titanium History

Notes

Discovery

shared discovery

date of discovery

1795

discoverer

Martin Heinrich Klaproth

birth

December 1, 1743

death

January 1, 1817

location of discovery

Berlin, Germany

shared discovery

date of discovery

1791

discoverer

William Gregor

birth

December 25, 1761

death

June 11 (or July 11), 1817

location of discovery

Creed, in Cornwall, England

Origin of Element Name

origin

titans

origin description

mythical—Sons of the Earth goddess

Origin of Element Symbol

symbol: Ti

origin

titanium

origin description

element name

Quantity

Titanium Abundances

Notes

Earth's Crust

5.65×103 ppm

Earth's Mantle

1280 ppm

primitive mantle

Bulk Earth

810 ppm

Ocean Water

0.001 ppm

Metalliferous Ocean Sediment

Ridge

240 ppm

River Water

0.003 ppm

U.S. Coal

0.08%

Human Body

20 mg

based on a 70 kg "reference man"

Human Hair

0.08 ppm to 14 ppm

Human Kidney

1 ppm

Human Liver

1.2 ppm to 4.7 ppm

Human Muscle

0.9 ppm to 2.2 ppm

Human Nail

0.28 ppm

Ferns

5.3 ppm

Fungi

<8 ppm

Solar System

2400

number of atoms for every 106 atoms of silicon

Sun

5.02 ± 0.06

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Moon

Terrae

0.15 ± 0.08 %

Maria

1.1 ± 0.6 %

Average

0.3%

Meteorites

4.93 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Halley's Comet

0.4 ± 0.2 atoms

number of atoms for every 100 atoms of magnesium

Quantity

Titanium Nomenclature

Notes

Element Names in Other Languages

French

titane

German

Titan

Italian

titanio

Spanish

titanio

Portuguese

titânio

Anions or Anionic Substituent Groups

titanide

Cations or Cationic Substituent Groups

titanium

Ligands

titanido

Heteroatomic Anion

titanate

'a' Term—Substitutive Nomenclature

titana

'y' Term—Chains and Rings Nomenclature

titany

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bearden, J. A., and A. F. Burr. "Reevaluation of X-Ray Atomic Energy Levels." Reviews of Modern Physics, volume 39, number 1, 1967, pp. 125–142. doi:10.1103/RevModPhys.39.125

Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points." Metrologia, volume 33, number 2, 1996, pp. 133–154. doi:10.1088/0026-1394/33/2/3

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., and D. L. Raimondi. "Atomic Screening Constants from SCF Functions." Journal of Chemical Physics, volume 38, number 11, 1963, pp. 2686–2689. doi:10.1063/1.1733573

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Collings, E. W. Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys, volume 1: Fundamentals. The International Cryogenics Monograph Series. Edited by K. D. Timmerhaus and Alan F. Clark. New York: Plenum Publishing Corporation, 1986.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Fuggle, John C., and Nils Mårtensson. "Core-Level Binding Energies in Metals." Journal of Electron Spectroscopy and Related Phenomena, volume 21, number 3, 1980, pp. 275–281. doi:10.1016/0368-2048(80)85056-0

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Hotop, H., and W. C. Lineberger. "Binding Energies in Atomic Negative Ions: II." Journal of Physical and Chemical Reference Data, volume 14, number 3, 1985, pp. 731–750.

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Jessberger, Elmar K., Alexander Christoforidis, and Jochen Kissel. "Aspects of the Major Element Composition of Halley's Dust." Nature, volume 332, number 21, 1988, pp. 691–695. doi:10.1038/332691a0

Kaxiras, Efthimios. Atomic and Electronic Structure of Solids. Cambridge: Cambridge University Press, 2003.

Kerley, Gerald I., editor. Equations of State for Titanium and Ti6A14V Alloy. SAND2003-3785, Sandia National Laboratories, October 2003.

King, H. W. "Temperature-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 3, number 2, 1982, pp. 275–276. doi:10.1007/BF02892394

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, Eugene T. Knight, Joseph F. Capitani, and Leland C. Allen. "Configuration Energies of the d-Block Elements." Journal of the American Chemical Society, volume 122, number 21, 2000, pp. 5132–5137. doi:10.1021/ja9928677

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Sugar, Jack, and Charles Corliss. "Atomic Energy Levels of the Iron-Period Elements: Potassium through Nickel." Journal of Physical and Chemical Reference Data, volume 14, number 2, 1985, pp. 1–664.

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Turkevich, Anthony L. "The Average Chemical Composition of the Lunar Surface." pp. 1159–1168 in Proceedings of the Fourth Lunar Science Conference, volume 2. Houston, TX, March 5–8, 1973. Edited by W. A. Gose. Oxford: Pergamon Press, 1973.

U. S. Department of Transportation (DOT), Transport Canada (TC), Secretariat of Transport and Communications of Mexico (SCT), and Centro de Información Química para Emergencias (CIQUIME). 2008 Emergency Response Guidebook.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical
sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more (Link leaves KnowledgeDoor website)