Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads, complex numbers, constants, advanced functions, user-defined keys, quick copy, and
more! Learn more (Link leaves KnowledgeDoor website)

Arsenic

Arsenic Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Arsenic Quick Reference

Click button to see citations

Notes

Symbol

As

Atomic Number

33

Atomic Weight

Rounded

74.922

for regular calculations

Standard

74.921595 ± 0.000006

for precise calculations

Oxidation States

 5

more common with disagreement

 3

more common with disagreement

 2

less common

-3

less common with disagreement

Pauling Electronegativity

oxidation state: 3

2.18

Electron Configuration

Orbital Occupancy

[Ar] 3d10 4s2 4p3

[Ar] represents the closed-shell electron configuration of argon

Orbital Filling Order

[Ar] 4s2 3d10 4p3

[Ar] represents the closed-shell electron configuration of argon

Term Symbol

4S3/2

see expanded configuration ...

Ionization Energies

I   (1)

 9.7886 eV

II  (2)

18.5892 eV

III (3)

28.351 eV 

IV  (4)

50.13 eV  

see all 6 energies ...

Electron Affinity

0.814 ± 0.008 eV

 6570 ± 70 cm-1 

Density

liquid, 1090.15 K

5.286 g/ml 

solid, 25 °C

5.778 g/cm3

Molar Volume

solid, 298 K, 1 atm

12.95 cm3/mol

Melting Point

gray arsenic, 38.6 atm

816 °C

Boiling Point

gray arsenic, 1 atm

616 °C

sublimes

Thermal Conductivity

gray arsenic, solid

400 K, polycrystalline

40.6 W/(m K)

extrapolated or estimated

300 K, polycrystalline

50.0 W/(m K)

extrapolated or estimated

298.2 K, polycrystalline

50.2 W/(m K)

extrapolated or estimated

273.2 K, polycrystalline

53.9 W/(m K)

extrapolated or estimated

200 K, polycrystalline

69.0 W/(m K)

extrapolated or estimated

see all 13 conductivities ...

Pyykkö Covalent Radius

single bond

121 pm

double bond

114 pm

triple bond

106 pm

Atomic Radius

120 pm

Quantity

Arsenic Atomic Structure

Notes

Ionization Energies

I   (1)

 9.7886 eV

II  (2)

18.5892 eV

III (3)

28.351 eV 

IV  (4)

50.13 eV  

see all 6 energies ...

Electron Affinity

0.814 ± 0.008 eV

 6570 ± 70 cm-1 

Electron Binding Energies

K    (1s)

11867 eV  

LI   (2s)

 1527.0 eV

LII  (2p1/2)

 1359.1 eV

LIII (2p3/2)

 1323.6 eV

see all 9 energies ...

Electron Configuration

Orbital Occupancy

[Ar] 3d10 4s2 4p3

[Ar] represents the closed-shell electron configuration of argon

Orbital Filling Order

[Ar] 4s2 3d10 4p3

[Ar] represents the closed-shell electron configuration of argon

Term Symbol

4S3/2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

32.2783

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

32.2783

Zeff = ζ × n

2s

Orbital Exponent

12.0635

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

24.1270

Zeff = ζ × n

see all 8 effective nuclear charges ...

Screening Percentage

70.3%

Fluorescence Yields

ωK

0.575 

ωL1

0.0028

ωL2

0.014 

ωL3

0.016 

Coster-Kronig Yields

F12

0.28 

F13

0.53 

F23

0.063

Quantity

Arsenic Physical Properties

Notes

Density

liquid, 1090.15 K

5.286 g/ml 

solid, 25 °C

5.778 g/cm3

Molar Mass

Rounded

74.922 g/mol

for regular calculations

Standard

74.921595 ± 0.000006 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

12.95 cm3/mol

Physical Form

gray arsenic

gray metal

yellow arsenic

soft yellow cubic crystals

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

5.73

Young's Modulus

gray arsenic

22 GPa

Electrical Resistivity

solid, 273 K

26×10-8 Ohm m

Photoelectric Work Function

5.11 eV

Superconducting Transition Temperature

32 GPa

2.4 K

maximum temperature

Mineralogical Hardness

3.5

Isothermal Bulk Modulus

300 K

39.4 GPa

Isothermal Compressibility

300 K

0.0254 GPa-1

Gram Atomic Volume

16 cm3

Quantity

Arsenic Atomic Interaction

Notes

Oxidation States

 5

more common with disagreement

 3

more common with disagreement

 2

less common

-3

less common with disagreement

Pauling Electronegativity

oxidation state: 3

2.18

Mulliken-Jaffe Electronegativity

oxidation state: 3

hybridsp3

2.38

hybrid20% s

2.26

orbitalp

1.78

Sanderson Electronegativity

oxidation state: 3

2.82

Allred-Rochow Electronegativity

oxidation state: 3

2.20

Configuration Energy

electron volt units

13.08 eV

Pauling units

 2.211  

Allen Electronegativity

oxidation state: 3

2.211

Allred Electronegativity

oxidation state: 3

2.18

Boyd-Edgecombe Electronegativity

2.21

Ghosh-Gupta Electronegativity

5.5372 eV

Nagle Electronegativity

2.11

Pearson Absolute Electronegativity

5.3 eV

Smith Electronegativity

oxidation state: 3

2.0

Chemical Hardness

4.5 eV

Cohesive Energy

per mole

285.3 kJ/mol  

per atom

  2.96 eV/atom

Quantity

Arsenic Thermodynamics

Notes

Melting Point

gray arsenic, 38.6 atm

816 °C

Boiling Point

gray arsenic, 1 atm

616 °C

sublimes

Thermal Conductivity

gray arsenic, solid

400 K, polycrystalline

40.6 W/(m K)

extrapolated or estimated

300 K, polycrystalline

50.0 W/(m K)

extrapolated or estimated

298.2 K, polycrystalline

50.2 W/(m K)

extrapolated or estimated

273.2 K, polycrystalline

53.9 W/(m K)

extrapolated or estimated

200 K, polycrystalline

69.0 W/(m K)

extrapolated or estimated

see all 13 conductivities ...

Triple Point

temperature

817 °C

pressure

37 atm

Critical Point

2100 K

Vapor Pressure

601 °C

100 kPa

508 °C

10 kPa

433 °C

1 kPa

see all 16 pressures ...

Isobaric Molar Heat Capacity

298.15 K, 1 bar

24.64 J/(mol K)

gray arsenic, 298.15 K, 1 bar

24.64 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.329 J/(g K)

Electronic Heat Capacity Coefficient

0.191 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

282 K

Room Temperature ( 298 K )

275 K

Quantity

Arsenic Identification

Notes

CAS Number

gray arsenic

7440-38-2

yellow arsenic

7440-38-2

DOT Number

1558

dust

1562

ICSC Number

gray arsenic

0013

RTECS Number

CG0525000

UN Number

gray arsenic

1558

Quantity

Arsenic Atomic Size

Notes

Atomic Radius

120 pm

Orbital Radius

100.1 pm

Pyykkö Covalent Radius

single bond

121 pm

double bond

114 pm

triple bond

106 pm

Cordero Covalent Radius

119 pm

Shannon-Prewitt Crystal Radius

ion charge: +3, coordination number: 6

72 pm  

ion charge: +5

coordination number: 4

47.5 pm

coordination number: 6

60 pm  

Shannon-Prewitt Effective Ionic Radius

ion charge: +3, coordination number: 6

58 pm  

ion charge: +5

coordination number: 4

33.5 pm

coordination number: 6

46 pm  

Pauling Empirical Crystal Radius

ion charge: +5

 47 pm

ion charge: -3

222 pm

Pauling Univalent Radius

ion charge: +1

 71 pm

ion charge: -1

285 pm

Batsanov Crystallographic Van Der Waals Radius

205 pm

Batsanov Equilibrium Van Der Waals Radius

225 pm

Bondi Van Der Waals Radius

185 pm

Pauling Van Der Waals Radius

2.0×102 pm

Slater Atomic-Ionic Radius

115 pm

Quantity

Arsenic Crystal Structure

Notes

Allotropes

allotrope

gray arsenic

alternate name

grey arsenic

alternate name

metallic arsenic

alternate name

ordinary arsenic

alternate name

rhombohedral arsenic

alternate name

α-arsenic

symbol

αAs

allotrope

β-amorphous arsenic

allotrope

γ-amorphous arsenic

allotrope

δ-amorphous arsenic

allotrope

orthorhombic arsenic

alternate name

arsenolamprite arsenic

alternate name

ε-arsenic

symbol

εAs

allotrope

yellow arsenic

alternate name

cubic arsenic

allotrope

fcc arsenic

Nearest Neighbor Distance

300 K, 1 atm

316 pm

Atomic Concentration

300 K, 1 atm

4.65×1022 cm-3

Quantity

Arsenic History

Notes

Discovery

date of discovery

circa 1250

discoverer

Albertus Magnus

birth

1193

death

1280

location of discovery

Germany

Origin of Element Name

origin

arsenikon

origin description

mineral—Greek for yellow orpiment

Origin of Element Symbol

symbol: As

origin

arsenic

origin description

element name

U.S. Towns Named After Elements

Arsenic Tubs, Arizona

Quantity

Arsenic Abundances

Notes

Earth's Crust

1.8 ppm

Earth's Mantle

0.066 ppm

primitive mantle

Earth's Core

5 ppm

Bulk Earth

1.7 ppm

Ocean Water

0.0023 ppm

Metalliferous Ocean Sediment

Ridge

145 ppm

River Water

≈0.001 ppm

U.S. Coal

24 ppm

Human Body

7 mg

based on a 70 kg "reference man"

Human Bone

0.08 ppm to 1.6 ppm

Human Hair

0.06 ppm to 3.7 ppm

Human Kidney

0.007 ppm to 1.5 ppm

Human Liver

0.023 ppm to 1.6 ppm

Human Muscle

0.009 ppm to 0.65 ppm

Human Nail

0.2 ppm to 3 ppm

Bacteria

0.1 ppm

Ferns

1.3 ppm

Fungi

1.2 ppm to 2.5 ppm

Solar System

6.56

number of atoms for every 106 atoms of silicon

Meteorites

2.35 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Arsenic Nomenclature

Notes

Element Names in Other Languages

French

arsenic

German

Arsen

Italian

arsenico

Spanish

arsénico

Portuguese

arsénic

Anions or Anionic Substituent Groups

arsenide (general)

As3-, arsenide(3-), arsanetriide

Cations or Cationic Substituent Groups

arsenic

Ligands

arsenido (general)

As3-, arsanetriido

Heteroatomic Anion

arsenate

'a' Term—Substitutive Nomenclature

arsa

'y' Term—Chains and Rings Nomenclature

arsy

References    (Click the button next to a value above to see complete citation information for that entry)

Albright, Thomas A., and Jeremy K. Burdett. Problems in Molecular Orbital Theory. New York: Oxford University Press, 1992.

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp. 9003–9014. doi:10.1021/ja00207a003

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp 9003–9014. doi:10.1021/ja00207a003

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bearden, J. A., and A. F. Burr. "Reevaluation of X-Ray Atomic Energy Levels." Reviews of Modern Physics, volume 39, number 1, 1967, pp. 125–142. doi:10.1103/RevModPhys.39.125

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Boyd, Russell J., and Kenneth E. Edgecombe. "Atomic and Group Electronegativities from the Electron-Density Distributions of Molecules." Journal of the American Chemical Society, volume 110, number 13, 1988, pp 4182–4186. doi:10.1021/ja00221a014

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Cardona, M., and L. Ley, editors. Photoemission in Solids I: General Principles. Berlin: Springer-Verlag, 1978.

Chauvin, Remi. "Explicit Periodic Trend of van der Waals Radii." The Journal of Physical Chemistry, volume 96, number 23, 1992, pp. 9194–9197. doi:10.1021/j100202a023

Clementi, E., and D. L. Raimondi. "Atomic Screening Constants from SCF Functions." Journal of Chemical Physics, volume 38, number 11, 1963, pp. 2686–2689. doi:10.1063/1.1733573

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Gaspard, J. P., R. Bellisent, C. Bergman, C. Bichara, A. Pellegatti, and R. Ceolin. "Atomic and Electronic Structure of Liquid As." Journal of Non-Crystalline Solids, volume 106, number 1-3, 1988, pp. 108–111. doi:10.1016/0022-3093(88)90240-2

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Burlington, MA: Butterworth-Heinemann, 1997.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Gray Arsenic. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc00/icsc0013.htm. Accessed on May 4, 2010.

International Labour Organization (ILO). International Chemical Safety Card for Gray Arsenic. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc00/icsc0013.htm. Accessed on May 5, 2010.

King, H. W. "Temperature-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 3, number 2, 1982, pp. 275–276. doi:10.1007/BF02892394

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Madelung, O., U. Rössler, and M. Schulz, editors. Non-Tetrahedrally Bonded Elements and Binary Compounds I. Berlin: Springer-Verlag, 1998. doi:10.1007/b71138

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Moore, Charlotte E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Washington, D.C.: National Bureau of Standards, 1970.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Gray Arsenic. http://www.cdc.gov/niosh/ipcsneng/neng0013.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Gray Arsenic. http://www.cdc.gov/niosh/ipcsneng/neng0013.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Arsenic. http://www.cdc.gov/niosh-rtecs/cg802c8.html. Accessed on May 5, 2010.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Soukhanov, Anne H., editor. The American Heritage Dictionary Of The English Language, 3rd edition. Boston: Houghton Mifflin Company, 1992.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

U. S. Department of Transportation (DOT), Transport Canada (TC), Secretariat of Transport and Communications of Mexico (SCT), and Centro de Información Química para Emergencias (CIQUIME). 2008 Emergency Response Guidebook.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more
(Link leaves KnowledgeDoor website)