Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads, complex numbers, constants, advanced functions, user-defined keys, quick copy, and
more! Learn more (Link leaves KnowledgeDoor website)

Niobium

Niobium Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Niobium Quick Reference

Click button to see citations

Notes

Symbol

Nb

Atomic Number

41

Atomic Weight

Rounded

92.906

for regular calculations

Standard

92.90637 ± 0.00001

for precise calculations

Oxidation States

 5

more common

 4

less common with disagreement

 3

less common with disagreement

 2

less common with disagreement

 1

less common

 0

less common

-1

less common

-3

less common

Pauling Electronegativity

oxidation state: 5

1.6

Electron Configuration

Orbital Occupancy

[Kr] 4d4 5s1

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s1 4d4

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

6D1/2

see expanded configuration ...

Ionization Energies

I   (1)

 6.75885 eV

II  (2)

14.0 eV    

III (3)

25.04 eV   

IV  (4)

38.3 eV    

see all 7 energies ...

Electron Affinity

0.893 ± 0.025 eV

 7200 ± 200 cm-1

Density

liquid, 2750.15 K

7.830 g/ml

solid

2500 K

8.05 g/cm3

2000 K

8.19 g/cm3

1500 K

8.32 g/cm3

1000 K

8.44 g/cm3

400 K

8.56 g/cm3

300 K

8.58 g/cm3

200 K

8.59 g/cm3

100 K

8.60 g/cm3

see all 27 densities ...

Molar Volume

solid, 298 K, 1 atm

10.83 cm3/mol

Melting Point

1 atm

2745 K

ITS-90 second-quality, secondary reference point (melting point)

Boiling Point

1 atm

5017.15 K

Thermal Conductivity

solid

400 K

55.2 W/(m K)

300 K

53.7 W/(m K)

298.2 K

53.7 W/(m K)

273.2 K

53.3 W/(m K)

200 K

52.6 W/(m K)

see all 47 conductivities ...

Pyykkö Covalent Radius

single bond

147 pm

double bond

125 pm

triple bond

116 pm

Atomic Radius

147 pm

Enthalpy of Fusion

1 atm

27.2 kJ/mol

Enthalpy of Vaporization

1 atm

696.6 kJ/mol

Quantity

Niobium Atomic Structure

Notes

Ionization Energies

I   (1)

 6.75885 eV

II  (2)

14.0 eV    

III (3)

25.04 eV   

IV  (4)

38.3 eV    

see all 7 energies ...

Electron Affinity

0.893 ± 0.025 eV

 7200 ± 200 cm-1

Electron Binding Energies

K    (1s)

18986 eV  

LI   (2s)

 2698 eV  

LII  (2p1/2)

 2465 eV  

LIII (2p3/2)

 2371 eV  

see all 12 energies ...

Electron Configuration

Orbital Occupancy

[Kr] 4d4 5s1

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s1 4d4

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

6D1/2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

40.1423

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

40.1423

Zeff = ζ × n

2s

Orbital Exponent

15.0626

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

30.1252

Zeff = ζ × n

see all 10 effective nuclear charges ...

Screening Percentage

89.7%

Fluorescence Yields

ωK

0.751 

ωL1

0.0094

ωL2

0.031 

ωL3

0.034 

Coster-Kronig Yields

F12

0.10 

F13

0.57 

F23

0.106

Quantity

Niobium Physical Properties

Notes

Density

liquid, 2750.15 K

7.830 g/ml

solid

2500 K

8.05 g/cm3

2000 K

8.19 g/cm3

1500 K

8.32 g/cm3

1000 K

8.44 g/cm3

400 K

8.56 g/cm3

300 K

8.58 g/cm3

200 K

8.59 g/cm3

100 K

8.60 g/cm3

see all 27 densities ...

Molar Mass

Rounded

92.906 g/mol

for regular calculations

Standard

92.90637 ± 0.00001 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

10.83 cm3/mol

Physical Form

gray metal

Linear Thermal Expansion Coefficient

25 °C

7.3×10-6 K-1

293 K

7.1×10-6 K-1

280 K

6.9×10-6 K-1

273 K

6.9×10-6 K-1

260 K

6.8×10-6 K-1

see all 21 coefficients ...

Speed of Sound

solid, 20 °C

longitudinal wave

5068 m/s

shear wave

2092 m/s

Young's Modulus

104.9 GPa

Poisson's Ratio

0.397

Electrical Resistivity

solid, 295 K

14.5×10-8 Ohm m

Photoelectric Work Function

4.5 eV

Thermionic Work Function

4.01 eV

Superconducting Transition Temperature

9.2880 K

ITS-90 first-quality, secondary reference point

10 GPa

9.9 K   

maximum temperature

Superconducting Critical Magnetic Field at Absolute Zero

1980×10-4 T

Superconducting Energy Gap

0 K

30.5×10-4 eV

Mineralogical Hardness

6.0

Vickers Hardness

473 K

1320 MN/m2

478 K

1130 MN/m2

see all 8 hardnesses ...

Isothermal Bulk Modulus

300 K

170.2 GPa

Isothermal Compressibility

300 K

0.00587 GPa-1

Gram Atomic Volume

11 cm3

Quantity

Niobium Atomic Interaction

Notes

Oxidation States

 5

more common

 4

less common with disagreement

 3

less common with disagreement

 2

less common with disagreement

 1

less common

 0

less common

-1

less common

-3

less common

Pauling Electronegativity

oxidation state: 5

1.6

Sanderson Electronegativity

oxidation state: 5

1.42

oxidation state: 4

1.25

oxidation state: 3

1.02

oxidation state: 2

0.77

Allred-Rochow Electronegativity

oxidation state: 5

1.23

Configuration Energy

electron volt units

8.34 eV

Pauling units

1.41   

Ghosh-Gupta Electronegativity

2.9740 eV

Nagle Electronegativity

1.21

Pearson Absolute Electronegativity

4.0 eV

Smith Electronegativity

oxidation state: 5

1.8

oxidation state: 4

1.75

Chemical Hardness

3.0 eV

Cohesive Energy

per mole

730 kJ/mol    

per atom

  7.57 eV/atom

Quantity

Niobium Thermodynamics

Notes

Melting Point

1 atm

2745 K

ITS-90 second-quality, secondary reference point (melting point)

Boiling Point

1 atm

5017.15 K

Thermal Conductivity

solid

400 K

55.2 W/(m K)

300 K

53.7 W/(m K)

298.2 K

53.7 W/(m K)

273.2 K

53.3 W/(m K)

200 K

52.6 W/(m K)

see all 47 conductivities ...

Critical Point

8700 K

Vapor Pressure

4740 °C

100 kPa

4120 °C

10 kPa

3637 °C

1 kPa

3251 °C

100 Pa

2934 °C

10 Pa

2669 °C

1 Pa

Enthalpy of Fusion

1 atm

27.2 kJ/mol

Enthalpy of Vaporization

1 atm

696.6 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

24.60 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.265 J/(g K)

Electronic Heat Capacity Coefficient

7.80 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

276 K

Room Temperature ( 298 K )

260 K

Quantity

Niobium Identification

Notes

CAS Number

7440-03-1

Quantity

Niobium Atomic Size

Notes

Atomic Radius

147 pm

Orbital Radius

158.9 pm

Pyykkö Covalent Radius

single bond

147 pm

double bond

125 pm

triple bond

116 pm

Cordero Covalent Radius

164 pm

Shannon-Prewitt Crystal Radius

ion charge: +3, coordination number: 6

86 pm

ion charge: +4

coordination number: 6

82 pm

coordination number: 8

93 pm

ion charge: +5

coordination number: 4

62 pm

coordination number: 6

78 pm

coordination number: 7

83 pm

coordination number: 8

88 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +3, coordination number: 6

72 pm

ion charge: +4

coordination number: 6

68 pm

coordination number: 8

79 pm

ion charge: +5

coordination number: 4

48 pm

coordination number: 6

64 pm

coordination number: 7

69 pm

coordination number: 8

74 pm

Pauling Empirical Crystal Radius

ion charge: +5

70 pm

Pauling Univalent Radius

ion charge: +1

100 pm

Batsanov Crystallographic Van Der Waals Radius

215 pm

Batsanov Equilibrium Van Der Waals Radius

246 pm

Slater Atomic-Ionic Radius

145 pm

Quantity

Niobium Crystal Structure

Notes

Nearest Neighbor Distance

300 K, 1 atm

286 pm

Atomic Concentration

300 K, 1 atm

5.56×1022 cm-3

Quantity

Niobium History

Notes

Discovery

date of discovery

1801

discoverer

Charles Hatchett

birth

January 2, 1765

death

February 10, 1847

location of discovery

London, England

Origin of Element Name

origin

Niobe

origin description

mythical—Daughter of king Tantalus in Greek Mythology

Origin of Element Symbol

symbol: Nb

origin

niobium

origin description

element name

Formerly Used or Proposed Element Names and Symbols

name

columbium

matching symbol

Cl

name

columbium

matching symbol

Cb

Quantity

Niobium Abundances

Notes

Earth's Crust

2.0×101 ppm

Earth's Mantle

588 ppb

primitive mantle

Bulk Earth

0.44 ppm

Ocean Water

1×10-6 ppm

Metalliferous Ocean Sediment

Basal

5.1 ppm

U.S. Coal

2.9 ppm

Human Body

1.5 mg

based on a 70 kg "reference man"

Human Bone

<0.07 ppm

Human Hair

2.2 ppm

Human Kidney

0.04 ppm to 0.07 ppm

Human Liver

0.15 ppm

Human Muscle

0.14 ppm

Solar System

0.698

number of atoms for every 106 atoms of silicon

Sun

1.42 ± 0.06

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

1.39 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Niobium Nomenclature

Notes

Element Names in Other Languages

French

niobium

German

Niob

Italian

niobio

Spanish

niobio

Portuguese

nióbio

Anions or Anionic Substituent Groups

niobide

Cations or Cationic Substituent Groups

niobium

Ligands

niobido

Heteroatomic Anion

niobate

'a' Term—Substitutive Nomenclature

nioba

'y' Term—Chains and Rings Nomenclature

nioby

References    (Click the button next to a value above to see complete citation information for that entry)

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Barron, T. H. K., and G. K. White. Heat Capacity and Thermal Expansion at Low Temperatures. New York: Kluwer Academic / Plenum Publishers, 1999.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points." Metrologia, volume 33, number 2, 1996, pp. 133–154. doi:10.1088/0026-1394/33/2/3

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

Cronan, D. S. "Basal Metalliferous Sediments from the Eastern Pacific." Geological Society of America Bulletin, volume 87, number 6, 1976, pp. 928–934. doi:10.1130/0016-7606(1976)87<928:BMSFTE>2.0.CO;2

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

Jensen, J. E., R. B. Stewart, W. A Tuttle, H. Brechna, and A. G. Prodell, editors. Brookhaven National Laboratory Selected Cryogenic Data Notebook. BNL 10200-R, Vol. 1, Brookhaven National Laboratory, August 1980.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

Kaxiras, Efthimios. Atomic and Electronic Structure of Solids. Cambridge: Cambridge University Press, 2003.

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kittel, Charles. Introduction to Solid State Physics, 5th edition. New York: John Wiley & Sons, Inc, 1976.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, Eugene T. Knight, Joseph F. Capitani, and Leland C. Allen. "Configuration Energies of the d-Block Elements." Journal of the American Chemical Society, volume 122, number 21, 2000, pp. 5132–5137. doi:10.1021/ja9928677

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Moore, Charlotte E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Washington, D.C.: National Bureau of Standards, 1970.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Weeks, Mary Elvira. "The Chemical Contributions of Charles Hatchett." Journal of Chemical Education, volume 15, number 4, 1938, pp. 153–158. doi:10.1021/ed015p153

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries,
or any special event. Learn more (Link leaves KnowledgeDoor website)