Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads,
complex numbers, constants, advanced functions, user-defined keys, quick copy, and more! Learn more (Link leaves KnowledgeDoor website)

Tungsten

Tungsten Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Tungsten Quick Reference

Click button to see citations

Notes

Symbol

W

Atomic Number

74

Atomic Weight

Rounded

183.84

for regular calculations

Standard

183.84 ± 0.01

for precise calculations

Oxidation States

 6

more common with disagreement

 5

less common with disagreement

 4

more common with disagreement

 3

less common with disagreement

 2

less common with disagreement

 1

less common

 0

less common

-1

less common

-2

less common

-4

less common

Pauling Electronegativity

oxidation state: 2

2.36

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d4 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14 5d4

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

5D0

see expanded configuration ...

Ionization Energies

I   (1)

 7.86403 ± 0.00010 eV

II  (2)

16.37 ± 0.15 eV      

III (3)

26.0 ± 0.4 eV        

IV  (4)

38.2 ± 0.4 eV        

see all 74 energies ...

Electron Affinity

0.815 ± 0.002 eV

 6570 ± 60 cm-1 

Density

22500 K, 1.6 GPa

 3.0 g/cm3  

critical point, predicted

liquid, 3695.15 K

17.700 g/ml 

α-tungsten, solid

25 °C

19.246 ± 0.003 g/cm3

calculated using x-ray lattice parameter measurements

20 °C

19.250 ± 0.004 g/cm3

hydrostatic weighing, zone refined single crystals

77 K

19.316 g/cm3

calculated using x-ray lattice parameter measurements

Molar Volume

solid, 298 K, 1 atm

9.47 cm3/mol

Melting Point

1 atm

3687 K

ITS-90 first-quality, secondary reference point (melting point)

Boiling Point

1 atm

5828.15 K

Thermal Conductivity

solid

400 K

159 W/(m K)

300 K

174 W/(m K)

298.2 K

174 W/(m K)

273.2 K

177 W/(m K)

200 K

186 W/(m K)

see all 53 conductivities ...

Pyykkö Covalent Radius

single bond

137 pm

double bond

120 pm

triple bond

115 pm

Atomic Radius

141 pm

Enthalpy of Fusion

1 atm

35.2 kJ/mol

Enthalpy of Vaporization

1 atm

799.1 kJ/mol

Quantity

Tungsten Atomic Structure

Notes

Ionization Energies

I   (1)

 7.86403 ± 0.00010 eV

II  (2)

16.37 ± 0.15 eV      

III (3)

26.0 ± 0.4 eV        

IV  (4)

38.2 ± 0.4 eV        

see all 74 energies ...

Electron Affinity

0.815 ± 0.002 eV

 6570 ± 60 cm-1 

Electron Binding Energies

K    (1s)

69525 eV  

LI   (2s)

12100 eV  

LII  (2p1/2)

11544 eV  

LIII (2p3/2)

10207 eV  

see all 19 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d4 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14 5d4

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

5D0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

72.5657

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

72.5657

Zeff = ζ × n

2s

Orbital Exponent

27.3349

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

54.6698

Zeff = ζ × n

see all 14 effective nuclear charges ...

Screening Percentage

87.6%

Fluorescence Yields

ωK

0.954

ωL1

0.148

ωL2

0.291

ωL3

0.261

Coster-Kronig Yields

F12

0.110

F13

0.333

F23

0.132

Quantity

Tungsten Physical Properties

Notes

Density

22500 K, 1.6 GPa

 3.0 g/cm3  

critical point, predicted

liquid, 3695.15 K

17.700 g/ml 

α-tungsten, solid

25 °C

19.246 ± 0.003 g/cm3

calculated using x-ray lattice parameter measurements

20 °C

19.250 ± 0.004 g/cm3

hydrostatic weighing, zone refined single crystals

77 K

19.316 g/cm3

calculated using x-ray lattice parameter measurements

Molar Mass

Rounded

183.84 g/mol

for regular calculations

Standard

183.84 ± 0.01 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

9.47 cm3/mol

Physical Form

gray-white metal

Linear Thermal Expansion Coefficient

600 K

4.75×10-6 K-1

300 K

4.49×10-6 K-1

293 K

4.42×10-6 K-1

260 K

4.32×10-6 K-1

220 K

4.20×10-6 K-1

190 K

4.06×10-6 K-1

see all 26 coefficients ...

Speed of Sound

solid

room temperature, annealed, longitudinal wave

5220 m/s

room temperature, annealed, shear wave

2890 m/s

room temperature, annealed, extensional wave

4620 m/s

20 °C

longitudinal wave

5221 m/s

shear wave

2887 m/s

see all 9 speeds of sound ...

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

19.3

Young's Modulus

411 GPa

Poisson's Ratio

0.280

Electrical Resistivity

solid

200 K

3.18×10-8 Ohm m

273 K

4.82×10-8 Ohm m

293 K

5.28×10-8 Ohm m

298 K

5.40×10-8 Ohm m

300 K

5.44×10-8 Ohm m

400 K

7.83×10-8 Ohm m

see all 53 resistivities ...

Contact Potential

4.38 eV

Photoelectric Work Function

4.49 eV

Thermionic Work Function

4.52 eV

Superconducting Transition Temperature

0.0154 ± 0.0005 K

Superconducting Critical Magnetic Field at Absolute Zero

1.07×10-4 T

Mineralogical Hardness

7.5

Vickers Hardness

metalloceramic

293 K

3430 MN/m2

673 K

1320 MN/m2

see all 4 hardnesses ...

Reflectivity

surface polished

0.5 μm

49%

0.6 μm

51%

0.7 μm

54%

see all 8 reflectivities ...

Isothermal Bulk Modulus

300 K

323.2 GPa

Isothermal Compressibility

300 K

0.00309 GPa-1

Gram Atomic Volume

10 cm3

Quantity

Tungsten Atomic Interaction

Notes

Oxidation States

 6

more common with disagreement

 5

less common with disagreement

 4

more common with disagreement

 3

less common with disagreement

 2

less common with disagreement

 1

less common

 0

less common

-1

less common

-2

less common

-4

less common

Pauling Electronegativity

oxidation state: 2

2.36

Sanderson Electronegativity

oxidation state: 6

1.67

oxidation state: 5

1.48

oxidation state: 4

1.23

oxidation state: 3

0.98

oxidation state: 2

0.73

Allred-Rochow Electronegativity

oxidation state: 3

1.40

Configuration Energy

electron volt units

8.67 eV

Pauling units

1.47   

Allred Electronegativity

oxidation state: 2

2.36

Nagle Electronegativity

1.31

Pearson Absolute Electronegativity

4.40 eV

Smith Electronegativity

oxidation state: 6

2.05

oxidation state: 4

1.95

Chemical Hardness

3.58 eV

Cohesive Energy

per mole

859 kJ/mol    

per atom

  8.90 eV/atom

Quantity

Tungsten Thermodynamics

Notes

Melting Point

1 atm

3687 K

ITS-90 first-quality, secondary reference point (melting point)

Boiling Point

1 atm

5828.15 K

Thermal Conductivity

solid

400 K

159 W/(m K)

300 K

174 W/(m K)

298.2 K

174 W/(m K)

273.2 K

177 W/(m K)

200 K

186 W/(m K)

see all 53 conductivities ...

Critical Point

temperature

22500 K

predicted

pressure

1.6 GPa

Vapor Pressure

5550 °C

100 kPa

4854 °C

10 kPa

4306 °C

1 kPa

3864 °C

100 Pa

3500 °C

10 Pa

3204 °C

1 Pa

Enthalpy of Fusion

1 atm

35.2 kJ/mol

Enthalpy of Vaporization

1 atm

799.1 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

24.27 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.132 J/(g K)

Electronic Heat Capacity Coefficient

1.01 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

383 K

Room Temperature ( 298 K )

312 K

Quantity

Tungsten Identification

Notes

CAS Number

7440-33-7

ICSC Number

powder

1404

RTECS Number

YO7175000

UN Number

3089

Quantity

Tungsten Atomic Size

Notes

Atomic Radius

141 pm

Orbital Radius

136.0 pm

Pyykkö Covalent Radius

single bond

137 pm

double bond

120 pm

triple bond

115 pm

Cordero Covalent Radius

162 pm

Shannon-Prewitt Crystal Radius

ion charge: +4, coordination number: 6

80 pm

ion charge: +5, coordination number: 6

76 pm

ion charge: +6

coordination number: 4

56 pm

coordination number: 5

65 pm

coordination number: 6

74 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +4, coordination number: 6

66 pm

ion charge: +5, coordination number: 6

62 pm

ion charge: +6

coordination number: 4

42 pm

coordination number: 5

51 pm

coordination number: 6

60 pm

Batsanov Crystallographic Van Der Waals Radius

2.1×102 pm

Batsanov Equilibrium Van Der Waals Radius

236 pm

Slater Atomic-Ionic Radius

135 pm

Quantity

Tungsten Crystal Structure

Notes

Allotropes

allotrope

α-tungsten

symbol

αW

allotrope

β-tungsten

symbol

βW

allotrope

γ-tungsten

symbol

γW

allotrope

amorphous tungsten

Nearest Neighbor Distance

300 K, 1 atm

274 pm

Atomic Concentration

300 K, 1 atm

6.30×1022 cm-3

Quantity

Tungsten History

Notes

Discovery

date of discovery

1783

discoverer

Don Fausto de Elhuyar

birth

October 11, 1755

death

January 6, 1833

discoverer

Don Juan José de Elhuyar y de Zubice

birth

June 15, 1754

death

September 20, 1796

location of discovery

Vergara, Spain

Origin of Element Name

origin

tung sten

origin description

mineral—Swedish for heavy stone

Origin of Element Symbol

symbol: W

origin

wolfram

origin description

word—German for wolf dirt

U.S. Towns Named After Elements

Tungsten, Nevada

Formerly Used or Proposed Element Names and Symbols

symbol

Tu

symbol

Tn

name

scheelium

no matching symbol specified

name

wolfram

no matching symbol specified

Quantity

Tungsten Abundances

Notes

Earth's Crust

1.25 ppm

Earth's Mantle

16 ppb

primitive mantle

Earth's Core

0.47 ppm

Bulk Earth

0.17 ppm

Ocean Water

0.00012 ppm

River Water

3×10-5 ppm

U.S. Coal

1.0 ppm

Human Body

0.02 mg

based on a 70 kg "reference man"

Human Bone

0.00025 ppm

Human Hair

0.016 ppm

Solar System

0.133

number of atoms for every 106 atoms of silicon

Sun

1.11 ± 0.15

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

0.68 ± 0.03

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Tungsten Nomenclature

Notes

Element Names in Other Languages

French

tungstène

German

Wolfram

Italian

wolframio

Spanish

wolframio

Portuguese

tungsténio

Anions or Anionic Substituent Groups

tungstide

Cations or Cationic Substituent Groups

tungsten

Ligands

tungstido

Heteroatomic Anion

tungstate

'a' Term—Substitutive Nomenclature

tungsta

'y' Term—Chains and Rings Nomenclature

tungsty

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Barron, T. H. K., and G. K. White. Heat Capacity and Thermal Expansion at Low Temperatures. New York: Kluwer Academic / Plenum Publishers, 1999.

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points." Metrologia, volume 33, number 2, 1996, pp. 133–154. doi:10.1088/0026-1394/33/2/3

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Desai, P. D., T. K. Chu, H. M. James, and C. Y. Ho. "Electrical Resistivity of Selected Elements." Journal of Physical and Chemical Reference Data, volume 13, number 4, 1984, pp. 1069–1096.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Fernelius, W. C., Kurt Loening, and Roy M. Adams. "Names of Groups and Elements." Journal of Chemical Education, volume 48, number 11, 1971, pp. 730–731. doi:10.1021/ed048p730

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

International Labour Organization (ILO). International Chemical Safety Card for Tungsten. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc14/icsc1404.htm. Accessed on May 4, 2010.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

Kerley, Gerald I., editor. Equations of State for Be, Ni, W, and Au. SAND2003-3784, Sandia National Laboratories, October 2003.

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kramida, Alexander E., and Joseph Reader. "Ionization Energies of Tungsten Ions: W2+ through W71+." Atomic Data and Nuclear Data Tables, volume 92, number 4, 2006, pp. 457–479. doi:10.1016/j.adt.2006.03.002

Lassner, Erik, and Wolf-Dieter Schubert. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic / Plenum Publishers, 1999.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, Eugene T. Knight, Joseph F. Capitani, and Leland C. Allen. "Configuration Energies of the d-Block Elements." Journal of the American Chemical Society, volume 122, number 21, 2000, pp. 5132–5137. doi:10.1021/ja9928677

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Tungsten. http://www.cdc.gov/niosh/ipcsneng/neng1404.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Tungsten. http://www.cdc.gov/niosh/ipcsneng/neng1404.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Tungsten. http://www.cdc.gov/niosh-rtecs/yo6d7b58.html. Accessed on May 5, 2010.

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Roberts, B. W. "Survey of Superconductive Materials and Critical Evaluation of Selected Properties." Journal of Physical and Chemical Reference Data, volume 5, number 3, 1976, pp. 581–821.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Weeks, Mary Elvira. "The Scientific Contributions of the de Elhuyar Brothers." Journal of Chemical Education, volume 11, number 7, 1934, pp. 413–419. doi:10.1021/ed011p413

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more (Link leaves KnowledgeDoor website)