Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads,
complex numbers, constants, advanced functions, user-defined keys, quick copy, and more! Learn more (Link leaves KnowledgeDoor website)

Beryllium

Beryllium Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Beryllium Quick Reference

Click button to see citations

Notes

Symbol

Be

Atomic Number

4

Atomic Weight

Rounded

9.0122

for regular calculations

Standard

9.0121831 ± 0.0000005

for precise calculations

Oxidation States

2

Pauling Electronegativity

1.57

Electron Configuration

Orbital Occupancy

[He] 2s2

[He] represents the closed-shell electron configuration of helium

Orbital Filling Order

[He] 2s2

[He] represents the closed-shell electron configuration of helium

Term Symbol

1S0

see expanded configuration ...

Ionization Energies

I   (1)

  9.32270 eV

II  (2)

 18.21114 eV

III (3)

153.89661 eV

IV  (4)

217.71865 eV

Electron Affinity

<0 eV

<0 cm-1

Density

13000 K, 0.7 GPa

0.12 g/cm3 

critical point, predicted

liquid, 1556.00 K

1.690 g/ml 

solid, 25 °C

1.850 g/cm3

Molar Volume

solid, 298 K, 1 atm

4.85 cm3/mol

Melting Point

1 bar

1560 ± 5 K

Boiling Point

1 atm

2757.00 K

Thermal Conductivity

solid

400 K, polycrystalline

161 W/(m K)

300 K, polycrystalline

200 W/(m K)

298.2 K, polycrystalline

201 W/(m K)

273.2 K, polycrystalline

218 W/(m K)

200 K, polycrystalline

301 W/(m K)

see all 47 conductivities ...

Pyykkö Covalent Radius

single bond

102 pm

double bond

 90 pm

triple bond

 85 pm

Atomic Radius

112 pm

Enthalpy of Fusion

1 atm

9.8 kJ/mol

Enthalpy of Vaporization

1 atm

308.8 kJ/mol

Quantity

Beryllium Atomic Structure

Notes

Ionization Energies

I   (1)

  9.32270 eV

II  (2)

 18.21114 eV

III (3)

153.89661 eV

IV  (4)

217.71865 eV

Electron Affinity

<0 eV

<0 cm-1

Electron Binding Energies

(1s)

111.5 eV

Electron Configuration

Orbital Occupancy

[He] 2s2

[He] represents the closed-shell electron configuration of helium

Orbital Filling Order

[He] 2s2

[He] represents the closed-shell electron configuration of helium

Term Symbol

1S0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

3.6848

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

3.6848

Zeff = ζ × n

2s

Orbital Exponent

0.9560

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

1.912 

Zeff = ζ × n

Screening Percentage

51.3%

Fluorescence Yields

ωK

0.0007

Quantity

Beryllium Physical Properties

Notes

Density

13000 K, 0.7 GPa

0.12 g/cm3 

critical point, predicted

liquid, 1556.00 K

1.690 g/ml 

solid, 25 °C

1.850 g/cm3

Molar Mass

Rounded

9.0122 g/mol

for regular calculations

Standard

9.0121831 ± 0.0000005 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

4.85 cm3/mol

Physical Form

hexagonal crystals

Linear Thermal Expansion Coefficient

25 °C

11.3×10-6 K-1

Speed of Sound

solid

room temperature, extensional wave

12870 m/s

20 °C

longitudinal wave

12890 m/s

shear wave

 8880 m/s

α-beryllium, solid, 293 K

13000 m/s

calculated value

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

1.85

Young's Modulus

α-beryllium

318 GPa

Poisson's Ratio

α-beryllium

0.075

Electrical Resistivity

solid

200 K, polycrystalline

1.29×10-8 Ohm m

273.15 K, polycrystalline

3.02×10-8 Ohm m

293 K, polycrystalline

3.56×10-8 Ohm m

300 K, polycrystalline

3.76×10-8 Ohm m

400 K, polycrystalline

6.76×10-8 Ohm m

see all 87 resistivities ...

Contact Potential

3.10 eV

Photoelectric Work Function

3.92 eV

Superconducting Transition Temperature

beryllium films

9.6 ± 0.1 K

bulk value

0.026 K

Mineralogical Hardness

5.5

Vickers Hardness

purity - 99.9%

293 K

1670 MN/m2

673 K

1080 MN/m2

see all 5 hardnesses ...

Isothermal Bulk Modulus

300 K

100.3 GPa

Isothermal Compressibility

300 K

0.00997 GPa-1

Gram Atomic Volume

5 cm3

Quantity

Beryllium Atomic Interaction

Notes

Oxidation States

2

Pauling Electronegativity

1.57

Mulliken-Jaffe Electronegativity

hybridsp

1.54

Sanderson Electronegativity

oxidation state: 2

1.810

oxidation state: 1

1.56

Allred-Rochow Electronegativity

1.47

Configuration Energy

electron volt units

9.323 eV

Pauling units

1.576   

Allen Electronegativity

1.576

Allred Electronegativity

oxidation state: 2

1.57

Boyd-Edgecombe Electronegativity

1.44

Ghosh-Gupta Electronegativity

3.7060 eV

Nagle Electronegativity

1.55

Pearson Absolute Electronegativity

4.9 eV

Smith Electronegativity

oxidation state: 2

1.5

Free Electron Fermi Surface Parameters

300 K

electron concentration

24.2×1022 cm-3

radius parameter

1.88

fermi wavevector

1.93×108 cm-1

fermi velocity

2.23×108 cm/s

fermi energy

14.14 eV

fermi temperature

16.41×104 K

Chemical Hardness

4.5 eV

Cohesive Energy

per mole

320 kJ/mol    

per atom

  3.32 eV/atom

Quantity

Beryllium Thermodynamics

Notes

Melting Point

1 bar

1560 ± 5 K

Boiling Point

1 atm

2757.00 K

Thermal Conductivity

solid

400 K, polycrystalline

161 W/(m K)

300 K, polycrystalline

200 W/(m K)

298.2 K, polycrystalline

201 W/(m K)

273.2 K, polycrystalline

218 W/(m K)

200 K, polycrystalline

301 W/(m K)

see all 47 conductivities ...

Critical Point

temperature

13000 K

predicted

pressure

0.7 GPa

Vapor Pressure

2469 °C

100 kPa

2054 °C

10 kPa

1750 °C

1 kPa

1518 °C

100 Pa

1335 °C

10 Pa

1189 °C

1 Pa

Enthalpy of Fusion

1 atm

9.8 kJ/mol

Enthalpy of Vaporization

1 atm

308.8 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

16.443 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

1.825 J/(g K)

Electronic Heat Capacity Coefficient

0.171 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

1481 K

Room Temperature ( 298 K )

1031 K

Quantity

Beryllium Identification

Notes

CAS Number

7440-41-7

DOT Number

powder

1567

ICSC Number

0226

RTECS Number

DS1750000

UN Number

1567

Quantity

Beryllium Atomic Size

Notes

Atomic Radius

112 pm

Orbital Radius

104.0 pm

Pyykkö Covalent Radius

single bond

102 pm

double bond

 90 pm

triple bond

 85 pm

Cordero Covalent Radius

96 pm

Shannon-Prewitt Crystal Radius

ion charge: +2

coordination number: 3

30 pm

coordination number: 4

41 pm

coordination number: 6

59 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +2

coordination number: 3

16 pm

coordination number: 4

27 pm

coordination number: 6

45 pm

Pauling Empirical Crystal Radius

ion charge: +2

31 pm

Pauling Univalent Radius

ion charge: +1

44 pm

Batsanov Crystallographic Van Der Waals Radius

1.9×102 pm

Batsanov Equilibrium Van Der Waals Radius

223 pm

Slater Atomic-Ionic Radius

105 pm

Quantity

Beryllium Crystal Structure

Notes

Allotropes

allotrope

α-beryllium

symbol

αBe

allotrope

β-beryllium

symbol

βBe

allotrope

γ-beryllium

symbol

γBe

Nearest Neighbor Distance

300 K, 1 atm

222 pm

Atomic Concentration

300 K, 1 atm

12.1×1022 cm-3

Quantity

Beryllium History

Notes

Discovery

date of discovery

1798

discoverer

Nicolas-Louis Vauquelin

birth

May 16, 1763

death

November 14, 1829

location of discovery

Paris, France

Origin of Element Name

origin

beryllos

origin description

mineral—Greek for beryl

Origin of Element Symbol

symbol: Be

origin

beryllium

origin description

element name

Formerly Used or Proposed Element Names and Symbols

name

glucinum

matching symbol

G

name

glucinum

matching symbol

Gl

name

glucinium

no matching symbol specified

Quantity

Beryllium Abundances

Notes

Earth's Crust

2.8 ppm

Earth's Mantle

0.070 ppm

primitive mantle

Bulk Earth

0.05 ppm

Ocean Water

6×10-7 ppm

Metalliferous Ocean Sediment

Basal

6.7 ppm

River Water

<1×10-4 ppm

U.S. Coal

2.2 ppm

Human Body

0.036 mg

based on a 70 kg "reference man"

Human Bone

0.003 ppm

Human Hair

0.006 ppm to 0.02 ppm

Human Kidney

0.0002 ppm

Human Liver

0.0016 ppm

Human Muscle

0.00075 ppm

Human Nail

<0.01 ppm

Solar System

0.73

number of atoms for every 106 atoms of silicon

Sun

1.40 ± 0.09

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

1.41 ± 0.04

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Beryllium Nomenclature

Notes

Element Names in Other Languages

French

béryllium

German

Beryllium

Italian

berillio

Spanish

berilio

Portuguese

berílio

Anions or Anionic Substituent Groups

beryllide

Cations or Cationic Substituent Groups

beryllium (general)

Be+, beryllium(1+)

Be2+, beryllium(2+)

Ligands

beryllido

Heteroatomic Anion

beryllate

'a' Term—Substitutive Nomenclature

berylla

'y' Term—Chains and Rings Nomenclature

berylly

References    (Click the button next to a value above to see complete citation information for that entry)

Albright, Thomas A., and Jeremy K. Burdett. Problems in Molecular Orbital Theory. New York: Oxford University Press, 1992.

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp. 9003–9014. doi:10.1021/ja00207a003

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Boyd, Russell J., and Kenneth E. Edgecombe. "Atomic and Group Electronegativities from the Electron-Density Distributions of Molecules." Journal of the American Chemical Society, volume 110, number 13, 1988, pp 4182–4186. doi:10.1021/ja00221a014

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Cardona, M., and L. Ley, editors. Photoemission in Solids I: General Principles. Berlin: Springer-Verlag, 1978.

Chase, Malcolm W., editor. JPCRD Monograph No. 9: NIST-JANAF Thermochemical Tables, (Part I and Part II). Woodbury, NY: American Chemical Society and the American Institute of Physics, 1998.

Chi, T. C. "Electrical Resistivity of Alkaline Earth Elements." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 439–498.

Clementi, E., and D. L. Raimondi. "Atomic Screening Constants from SCF Functions." Journal of Chemical Physics, volume 38, number 11, 1963, pp. 2686–2689. doi:10.1063/1.1733573

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

Cronan, D. S. "Basal Metalliferous Sediments from the Eastern Pacific." Geological Society of America Bulletin, volume 87, number 6, 1976, pp. 928–934. doi:10.1130/0016-7606(1976)87<928:BMSFTE>2.0.CO;2

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Glover, Rolfe E., Stefan Moser, and Friedhold Baumann. "Superconducting Beryllium Films." Journal of Low Temperature Physics, volume 5, number 5, 1971, pp. 519–536. doi:10.1007/BF00628182

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Beryllium. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc02/icsc0226.htm. Accessed on May 5, 2010.

International Labour Organization (ILO). International Chemical Safety Card for Beryllium. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc02/icsc0226.htm. Accessed on May 4, 2010.

Kaxiras, Efthimios. Atomic and Electronic Structure of Solids. Cambridge: Cambridge University Press, 2003.

Kerley, Gerald I., editor. Equations of State for Be, Ni, W, and Au. SAND2003-3784, Sandia National Laboratories, October 2003.

King, H. W. "Temperature-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 3, number 2, 1982, pp. 275–276. doi:10.1007/BF02892394

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Beryllium. http://www.cdc.gov/niosh/ipcsneng/neng0226.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Beryllium. http://www.cdc.gov/niosh/ipcsneng/neng0226.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Beryllium. http://www.cdc.gov/niosh-rtecs/ds1ab3f0.html. Accessed on May 5, 2010.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Roberts, B. W. "Survey of Superconductive Materials and Critical Evaluation of Selected Properties." Journal of Physical and Chemical Reference Data, volume 5, number 3, 1976, pp. 581–821.

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

U. S. Department of Transportation (DOT), Transport Canada (TC), Secretariat of Transport and Communications of Mexico (SCT), and Centro de Información Química para Emergencias (CIQUIME). 2008 Emergency Response Guidebook.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more (Link leaves KnowledgeDoor website)