Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads, complex numbers, constants, advanced functions, user-defined keys, quick copy, and
more! Learn more (Link leaves KnowledgeDoor website)

Sulfur

Sulfur Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Sulfur Quick Reference

Click button to see citations

Notes

Symbol

S

Atomic Number

16

Atomic Weight

Rounded

32.06

for regular calculations

Standard

32.059 to 32.076

for precise calculations

Oxidation States

 6

more common with disagreement

 5

less common

 4

less common with disagreement

 3

less common

 2

less common with disagreement

 1

less common

 0

less common

-1

less common

-2

more common with disagreement

Pauling Electronegativity

2.58

Electron Configuration

Orbital Occupancy

[Ne] 3s2 3p4

[Ne] represents the closed-shell electron configuration of neon

Orbital Filling Order

[Ne] 3s2 3p4

[Ne] represents the closed-shell electron configuration of neon

Term Symbol

3P2

see expanded configuration ...

Ionization Energies

I   (1)

10.36001 eV      

II  (2)

23.33788 eV      

III (3)

34.79 eV         

IV  (4)

47.222 ± 0.012 eV

see all 16 energies ...

Electron Affinity

2.0771029 ± 0.0000010 eV

16752.966 ± 0.008 cm-1  

Density

liquid, 388.36 K

1.794 g/ml 

α-orthorhombic sulfur, solid

173 K

2.108 g/cm3

298 K

2.066 g/cm3

β-monoclinic sulfur, solid

113 K

2.088 g/cm3

298 K

2.008 g/cm3

γ-monoclinic sulfur, solid, 298 K

2.08 g/cm3 

see all 19 densities ...

Molar Volume

solid, 298 K, 1 atm

15.53 cm3/mol

Melting Point

1 bar

388.36 ± 0.02 K

α-orthorhombic sulfur

115 °C

β-monoclinic sulfur

120 °C

γ-monoclinic sulfur

109 °C

see all 13 melting points ...

Boiling Point

1 atm

717.764 K

ITS-90 second-quality, secondary reference point

α-orthorhombic sulfur, 1 atm

717.76 K 

β-monoclinic sulfur, 1 atm

717.76 K 

Thermal Conductivity

liquid, 400 K

0.132 W/(m K)

solid

300 K, polycrystalline

0.269 W/(m K)

298.2 K, polycrystalline

0.270 W/(m K)

273.2 K, polycrystalline

0.287 W/(m K)

200 K, polycrystalline

0.355 W/(m K)

amorphous sulfur, solid

300 K

0.206 W/(m K)

298.2 K

0.205 W/(m K)

273.2 K

0.200 W/(m K)

see all 50 conductivities ...

Pyykkö Covalent Radius

single bond

103 pm

double bond

 94 pm

triple bond

 95 pm

Atomic Radius

103 pm

Enthalpy of Fusion

1 atm

1.23 kJ/mol

Enthalpy of Vaporization

1 atm

9.62 kJ/mol

Quantity

Sulfur Atomic Structure

Notes

Ionization Energies

I   (1)

10.36001 eV      

II  (2)

23.33788 eV      

III (3)

34.79 eV         

IV  (4)

47.222 ± 0.012 eV

see all 16 energies ...

Electron Affinity

2.0771029 ± 0.0000010 eV

16752.966 ± 0.008 cm-1  

Electron Binding Energies

K    (1s)

2472 eV  

LI   (2s)

 230.9 eV

LII  (2p1/2)

 163.6 eV

LIII (2p3/2)

 162.5 eV

Electron Configuration

Orbital Occupancy

[Ne] 3s2 3p4

[Ne] represents the closed-shell electron configuration of neon

Orbital Filling Order

[Ne] 3s2 3p4

[Ne] represents the closed-shell electron configuration of neon

Term Symbol

3P2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

15.5409

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

15.5409

Zeff = ζ × n

2s

Orbital Exponent

 5.3144

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

10.629 

Zeff = ζ × n

see all 5 effective nuclear charges ...

Screening Percentage

65.9%

Fluorescence Yields

ωK

0.080   

ωL1

0.000074

ωL2

0.00026 

ωL3

0.00026 

Coster-Kronig Yields

F12

0.32

F13

0.62

Quantity

Sulfur Physical Properties

Notes

Density

liquid, 388.36 K

1.794 g/ml 

α-orthorhombic sulfur, solid

173 K

2.108 g/cm3

298 K

2.066 g/cm3

β-monoclinic sulfur, solid

113 K

2.088 g/cm3

298 K

2.008 g/cm3

γ-monoclinic sulfur, solid, 298 K

2.08 g/cm3 

see all 19 densities ...

Molar Mass

Rounded

32.06 g/mol

for regular calculations

Standard

32.059 g/mol to 32.076 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

15.53 cm3/mol

Physical Form

α-orthorhombic sulfur

yellow orthorhombic crystals

β-monoclinic sulfur

yellow monoclinic needles

Young's Modulus

α-orthorhombic sulfur

17.80 GPa

Dielectric Constant

liquid

3.5 

powder

3.6 

450 °F

3.5 

407.2 K

3.50

244 °F

3.5 

298 K

11 component of dielectric tensor, 102 Hz to 103 Hz

3.75

22 component of dielectric tensor, 102 Hz to 103 Hz

3.95

33 component of dielectric tensor, 102 Hz to 103 Hz

4.44

sublimed, 102 Hz to 103 Hz

3.69

Superconducting Transition Temperature

200 GPa

17.3 ± 0.5 K

maximum temperature

Mineralogical Hardness

2.0

Isothermal Bulk Modulus

α-orthorhombic sulfur, 300 K

17.8 GPa

Isothermal Compressibility

α-orthorhombic sulfur, 300 K

0.0562 GPa-1

Gram Atomic Volume

16 cm3

Quantity

Sulfur Atomic Interaction

Notes

Oxidation States

 6

more common with disagreement

 5

less common

 4

less common with disagreement

 3

less common

 2

less common with disagreement

 1

less common

 0

less common

-1

less common

-2

more common with disagreement

Pauling Electronegativity

2.58

Mulliken-Jaffe Electronegativity

hybridsp3

2.86

hybrid16.7% s

2.69

orbitalp

2.31

Sanderson Electronegativity

2.957

Allred-Rochow Electronegativity

2.44

Configuration Energy

electron volt units

15.31 eV

Pauling units

 2.589  

Allen Electronegativity

2.589

Allred Electronegativity

oxidation state: 2

2.58

Boyd-Edgecombe Electronegativity

2.64

Ghosh-Gupta Electronegativity

6.8379 eV

Nagle Electronegativity

2.49

Pearson Absolute Electronegativity

6.22 eV

Smith Electronegativity

oxidation state: 6

2.45

oxidation state: 4

2.5

oxidation state: -2

2.55

Chemical Hardness

4.14 eV

Cohesive Energy

per mole

275 kJ/mol    

per atom

  2.85 eV/atom

Quantity

Sulfur Thermodynamics

Notes

Melting Point

1 bar

388.36 ± 0.02 K

α-orthorhombic sulfur

115 °C

β-monoclinic sulfur

120 °C

γ-monoclinic sulfur

109 °C

see all 13 melting points ...

Boiling Point

1 atm

717.764 K

ITS-90 second-quality, secondary reference point

α-orthorhombic sulfur, 1 atm

717.76 K 

β-monoclinic sulfur, 1 atm

717.76 K 

Thermal Conductivity

liquid, 400 K

0.132 W/(m K)

solid

300 K, polycrystalline

0.269 W/(m K)

298.2 K, polycrystalline

0.270 W/(m K)

273.2 K, polycrystalline

0.287 W/(m K)

200 K, polycrystalline

0.355 W/(m K)

amorphous sulfur, solid

300 K

0.206 W/(m K)

298.2 K

0.205 W/(m K)

273.2 K

0.200 W/(m K)

see all 50 conductivities ...

Critical Point

1314 K

Vapor Pressure

444 °C

100 kPa

318 °C

10 kPa

235 °C

1 kPa

see all 16 pressures ...

Enthalpy of Fusion

1 atm

1.23 kJ/mol

Enthalpy of Vaporization

1 atm

9.62 kJ/mol

Isobaric Molar Heat Capacity

α-orthorhombic sulfur, 298.15 K, 1 bar

22.70 J/(mol K)

Isobaric Specific Heat Capacity

α-orthorhombic sulfur, 298.15 K, 1 bar

0.708 J/(g K)

Debye Temperature

Room Temperature ( 298 K )

527 K

Quantity

Sulfur Identification

Notes

CAS Number

7704-34-9

α-orthorhombic sulfur

7704-34-9

β-monoclinic sulfur

7704-34-9

DOT Number

1350

molten

2448

ICSC Number

1166

RTECS Number

WS4250000

UN Number

1350

Quantity

Sulfur Atomic Size

Notes

Atomic Radius

103 pm

Orbital Radius

81.0 pm

Pyykkö Covalent Radius

single bond

103 pm

double bond

 94 pm

triple bond

 95 pm

Cordero Covalent Radius

105 pm

Shannon-Prewitt Crystal Radius

ion charge: -2, coordination number: 6

170 pm

ion charge: +4, coordination number: 6

 51 pm

ion charge: +6

coordination number: 4

 26 pm

coordination number: 6

 43 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: -2, coordination number: 6

184 pm

ion charge: +4, coordination number: 6

 37 pm

ion charge: +6

coordination number: 4

 12 pm

coordination number: 6

 29 pm

Pauling Empirical Crystal Radius

ion charge: -2

184 pm

Pauling Univalent Radius

ion charge: +1

 53 pm

ion charge: -1

219 pm

Batsanov Crystallographic Van Der Waals Radius

1.8×102 pm

Batsanov Equilibrium Van Der Waals Radius

206 pm

Bondi Van Der Waals Radius

180 pm

Pauling Van Der Waals Radius

185 pm

Slater Atomic-Ionic Radius

100 pm

Quantity

Sulfur Crystal Structure

Notes

Allotropes

allotrope

disulfur

symbol

S2

allotrope

trisulfur

symbol

S3

allotrope

tetrasulfur

symbol

S4

allotrope

cyclo-hexasulfur

alternate name

Engel's sulfur

alternate name

Aten's sulfur

alternate name

ε-sulfur

alternate name

p-sulfur

symbol

S6

allotrope category

cyclo-heptasulfur

allotrope

α–cyclo-heptasulfur

symbol

α-S7

allotrope

β–cyclo-heptasulfur

symbol

β-S7

allotrope

γ–cyclo-heptasulfur

symbol

γ-S7

allotrope

δ–cyclo-heptasulfur

symbol

δ-S7

allotrope

α-orthorhombic sulfur

symbol

α-S8

allotrope

β-monoclinic sulfur

symbol

β-S8

allotrope

γ-monoclinic sulfur

symbol

γ-S8

allotrope category

cyclo-nonasulfur

allotrope

α–cyclo-nonasulfur

symbol

α-S9

allotrope

β–cyclo-nonasulfur

symbol

β-S9

allotrope

cyclo-decasulfur

symbol

S10

allotrope

the compound S6·S10

symbol

S6·S10

allotrope

cyclo-undecasulfur

symbol

S11

allotrope

cyclo-dodecasulfur

symbol

S12

allotrope

cyclo-tridecasulfur

symbol

S13

allotrope

cyclo-tetradecasulfur

symbol

S14

allotrope

cyclo-pentadecasulfur

symbol

S15

allotrope category

cyclo-octadecasulfur

allotrope

α–cyclo-octadecasulfur

alternate name

endo-S18

symbol

α-S18

allotrope

β–cyclo-octadecasulfur

alternate name

exo-S18

symbol

β-S18

allotrope

cyclo-eicosasulfur

symbol

S20

allotrope

amorphous sulfur

alternate name

vitreous sulfur

alternate name

glassy sulfur

alternate name

plastic sulfur

allotrope

insoluble sulfur

allotrope

fibrous sulfur

symbol

Sψ

allotrope

2nd fibrous sulfur

symbol

Sψ'

allotrope

laminar sulfur

symbol

Sχ

Quantity

Sulfur History

Notes

Discovery

date of discovery

prehistory

discoverer

unknown

location of discovery

unknown

Origin of Element Name

origin

sulvere

origin description

word—Sanskrit for sulphur

Origin of Element Symbol

symbol: S

origin

sulfur

origin description

element name

U.S. Towns Named After Elements

Sulfur, Louisiana

Formerly Used or Proposed Element Names and Symbols

name

sulphur

no matching symbol specified

Quantity

Sulfur Abundances

Notes

Earth's Crust

3.50×102 ppm

Earth's Mantle

200 ppm

primitive mantle

Earth's Core

1.90%

Bulk Earth

6350 ppm

Ocean Water

928 ppm

River Water

3.7 ppm

U.S. Coal

1.8%

Human Body

140 g

based on a 70 kg "reference man"

Human Bone

500 ppm to 2400 ppm

Human Hair

42×103 ppm to 60×103 ppm

Human Kidney

9×103 ppm

Human Liver

7×103 ppm to 12×103 ppm

Human Muscle

5×103 ppm to 11×103 ppm

Human Nail

37×103 ppm

Bacteria

5.3×103 ppm

Ferns

1000 ppm

Fungi

4×103 ppm

Universe

0.00002

relative to hydrogen = 1.00000

Solar System

5.15×105

number of atoms for every 106 atoms of silicon

Sun

7.33 ± 0.11

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

7.18 ± 0.04

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Halley's Comet

72 ± 23 atoms

number of atoms for every 100 atoms of magnesium

Quantity

Sulfur Nomenclature

Notes

Element Names in Other Languages

French

soufre

German

Schwefel

Italian

solfo

Spanish

azufre

Portuguese

enxofre

Anions or Anionic Substituent Groups

sulfide (general)

S•-, sulfanidyl, sulfide(•1-)

S2-, sulfanediide, sulfide(2-)

Cations or Cationic Substituent Groups

sulfur (general)

S+, sulfur(1+)

Ligands

sulfido (general)

S•-, sulfanidyl, sulfido(•1-)

S2-, sulfanediido, sulfido(2-)

Heteroatomic Anion

sulfate

'a' Term—Substitutive Nomenclature

thia

'y' Term—Chains and Rings Nomenclature

sulfy

References    (Click the button next to a value above to see complete citation information for that entry)

Albright, Thomas A., and Jeremy K. Burdett. Problems in Molecular Orbital Theory. New York: Oxford University Press, 1992.

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp 9003–9014. doi:10.1021/ja00207a003

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp. 9003–9014. doi:10.1021/ja00207a003

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Ball, David W. "Elemental Etymology: What's in a Name?" Journal of Chemical Education, volume 62, number 9, 1985, pp. 787–788. doi:10.1021/ed062p787

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bearden, J. A., and A. F. Burr. "Reevaluation of X-Ray Atomic Energy Levels." Reviews of Modern Physics, volume 39, number 1, 1967, pp. 125–142. doi:10.1103/RevModPhys.39.125

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Boyd, Russell J., and Kenneth E. Edgecombe. "Atomic and Group Electronegativities from the Electron-Density Distributions of Molecules." Journal of the American Chemical Society, volume 110, number 13, 1988, pp 4182–4186. doi:10.1021/ja00221a014

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Cardona, M., and L. Ley, editors. Photoemission in Solids I: General Principles. Berlin: Springer-Verlag, 1978.

Chase, Malcolm W., editor. JPCRD Monograph No. 9: NIST-JANAF Thermochemical Tables, (Part I and Part II). Woodbury, NY: American Chemical Society and the American Institute of Physics, 1998.

Clementi, E., and D. L. Raimondi. "Atomic Screening Constants from SCF Functions." Journal of Chemical Physics, volume 38, number 11, 1963, pp. 2686–2689. doi:10.1063/1.1733573

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Croswell, Ken. The Alchemy of the Heavens. New York: Anchor Books, 1995.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gregoryanz, Eugene, Viktor V. Struzhkin, Russell J. Hemley, Mikhail I. Eremets, Ho-kwang Mao, and Yuri A. Timofeev. "Superconductivity in the Chalcogens up to Multimegabar Pressures." Physical Review B, volume 65, number 6, 2002, pp. 064504–1 to 064504–6. doi:10.1103/PhysRevB.65.064504

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Sulfur. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc11/icsc1166.htm. Accessed on May 5, 2010.

International Labour Organization (ILO). International Chemical Safety Card for Sulfur. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc11/icsc1166.htm. Accessed on May 4, 2010.

Jessberger, Elmar K., Alexander Christoforidis, and Jochen Kissel. "Aspects of the Major Element Composition of Halley's Dust." Nature, volume 332, number 21, 1988, pp. 691–695. doi:10.1038/332691a0

Kaufman, Victor, and W. C. Martin. "Wavelengths and Energy Level Classifications for the Spectra of Sulfur (S I through S XVI)." Journal of Physical and Chemical Reference Data, volume 22, number 2, 1993, pp. 279–375.

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Wai-Kee, Gong-Du Zhou, and Thomas Mak. Advanced Structural Inorganic Chemistry. Oxford: Oxford University Press, 2008.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Sulfur. http://www.cdc.gov/niosh/ipcsneng/neng1166.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Sulfur. http://www.cdc.gov/niosh/ipcsneng/neng1166.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Sulfur. http://www.cdc.gov/niosh-rtecs/ws40d990.html. Accessed on May 5, 2010.

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Speight, James G. Perry's Standard Tables and Formulas for Chemical Engineers. New York: The McGraw-Hill Companies, Inc., 2003.

Steudel, Ralf, and Bodo Eckert. "Solid Sulfur Allotropes." pp. 1–79 in Elemental Sulfur and Sulfur-Rich Compounds I. Edited by Ralf Steudel. Berlin: Springer–Verlag, 2003. doi:10.1007/b12110

U. S. Department of Transportation (DOT), Transport Canada (TC), Secretariat of Transport and Communications of Mexico (SCT), and Centro de Información Química para Emergencias (CIQUIME). 2008 Emergency Response Guidebook.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Young, K. F., and H. P. R. Frederikse. "Compilation of the Static Dielectric Constant of Inorganic Solids." Journal of Physical and Chemical Reference Data, volume 2, number 2, 1973, pp. 313–409.

Zefirov, Yu. V. "Comparative Analysis of Systems of van der Waals Radii." Crystallography Reports, volume 42, number 1, 1997, pp. 111–116.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more (Link leaves KnowledgeDoor website)